HOLISTEP | SUB-WAVELENGTH HOLOGRAPHIC LITHOGRAPHY STEPPER FOR INTEGRATED CIRCUIT PRODUCTION

Summary

To achieve ever shrinking dimensions and higher resolutions of circuit elements, projection lithography (PL), is growing in complexity and cost to manufacturers. It is limited to producing 2D images on flat surfaces. Extension to 3D imaging is restricted by trade-off between focus depth and resolution. Advanced, cost-efficient solutions to fabricate wafer-scale 3D components are required.

HoLiSTEP unleashes the potential of sub-wavelength Holographic Lithography (HL) as a powerful and enabling disruptive lithography. HL will overcome limitations of PL and facilitate production of novel 3D topographies with high resolution while making the production of high-resolution IC much more affordable.

An industrial prototype operating at 345nm with 200nm resolution will be produced and validated in an operational environment. Several advancements in holographic stepper subcomponents must be realised: A UV fibre-based laser with 20W output power at 345nm and 1.5m coherence length, an alignment system with 25nm overlay precision, an adaptive optical system with correction precision of 1/20λ and software modules for vector diffraction models.

Energy consumption of HL technology is drastically reduced compared to PL due to low power-consumption of the laser and production of complex structures in one exposure. HL images are not sensitive to mask defects, eliminating frequent mask replacements and use of toxic materials. Moreover, holographic masks act as projection optics, eliminating the need for complex optical systems.

The HL prototype will be verified for 3D patterning for MEMS, MOEMS and micro-optical components to show better resolution, flexibility of 3D printing and reduced cost. HoLiSTEP will empower a positive transformative effect on environment, economy and society by enabling a wider range of companies to produce novel high-resolution 2D and 3D images at lower costs.

Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101137624
Start date: 01-01-2024
End date: 31-12-2027
Total budget - Public funding: - 3 547 090,00 Euro
View on other portals
Cordis data

Original description

To achieve ever shrinking dimensions and higher resolutions of circuit elements, projection lithography (PL), is growing in complexity and cost to manufacturers. It is limited to producing 2D images on flat surfaces. Extension to 3D imaging is restricted by trade-off between focus depth and resolution. Advanced, cost-efficient solutions to fabricate wafer-scale 3D components are required.
HoLiSTEP unleashes the potential of sub-wavelength Holographic Lithography (HL) as a powerful and enabling disruptive lithography. HL will overcome limitations of PL and facilitate production of novel 3D topographies with high resolution while making the production of high-resolution IC much more affordable.
An industrial prototype operating at 345nm with 200nm resolution will be produced and validated in an operational environment. Several advancements in holographic stepper subcomponents must be realised: A UV fibre-based laser with 20W output power at 345nm and 1.5m coherence length, an alignment system with 25nm overlay precision, an adaptive optical system with correction precision of 1/20λ and software modules for vector diffraction models.
Energy consumption of HL technology is drastically reduced compared to PL due to low power-consumption of the laser and production of complex structures in one exposure. HL images are not sensitive to mask defects, eliminating frequent mask replacements and use of toxic materials. Moreover, holographic masks act as projection optics, eliminating the need for complex optical systems.
The HL prototype will be verified for 3D patterning for MEMS, MOEMS and micro-optical components to show better resolution, flexibility of 3D printing and reduced cost. HoLiSTEP will empower a positive transformative effect on environment, economy and society by enabling a wider range of companies to produce novel high-resolution 2D and 3D images at lower costs.

Status

SIGNED

Call topic

HORIZON-CL4-2023-TWIN-TRANSITION-01-02

Update Date

29-01-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Factories of the Future Partnership (FoF) - Made in Europe Partnership (MiE)
Made in Europe (MiE)
Made in Europe Call 2023
HORIZON-CL4-2023-TWIN-TRANSITION-01-02: High-precision OR complex product manufacturing – potentially including the use of photonics (Made in Europe and Photonics Partnerships) (IA)
Photonics Partnership
Photonics Partnership Call 2023
HORIZON-CL4-2023-TWIN-TRANSITION-01-02: High-precision OR complex product manufacturing – potentially including the use of photonics (Made in Europe and Photonics Partnerships) (IA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.0 Cross-cutting call topics
HORIZON-CL4-2023-TWIN-TRANSITION-01
HORIZON-CL4-2023-TWIN-TRANSITION-01-02: High-precision OR complex product manufacturing – potentially including the use of photonics (Made in Europe and Photonics Partnerships) (IA)
HORIZON.2.4.1 Manufacturing Technologies
HORIZON-CL4-2023-TWIN-TRANSITION-01
HORIZON-CL4-2023-TWIN-TRANSITION-01-02: High-precision OR complex product manufacturing – potentially including the use of photonics (Made in Europe and Photonics Partnerships) (IA)