Summary
The core objective of InnoBMS is to develop and demonstrate (TRL6) a future-ready best-in-class BMS hard- and software solution that maximizes battery utilization and performance for the user without negatively affecting battery life, even in extreme conditions, whilst continuously maintaining safety. Concretely, the InnoBMS proposal will deliver a 12% higher effective battery pack volumetric density, a 33% longer battery lifetime and a demonstrated lifetime of 15 years. The results will be demonstrated using novel testing methods that give a 36% reduction in the testing time of a BMS. The results will be demonstrated in two use cases, one light commercial vehicle (Fiat Doblo Electric) and one medium-duty van (IVECO eDaily). The key outcomes will enable a cost reduction of 12% and 9.7% for passenger cars and light-duty vehicles, respectively.
The core objective will be achieved through five technical objectives. 1) advanced hybrid physical and data-driven models and algorithms to enable a flexible and modular BMS suitable for a wide range of batteries. 2) Software for a fully connected and fully wireless BMS that acts as a communication server inside the vehicle E/E-architecture, the center of connection, on-board diagnostics and decision-taking for all battery-related information. 3) A scalable, fully wireless and self-tested BMS hardware that enables using different battery sizes at different operating voltage levels, and smart sensor integration. 4) Better battery utilization and exploitation using cloud-informed strategies and procedure. 5) A heterogeneous simulation toolchain and automated test methods.
The consortium includes 2 vehicle manufacturers, 2 TIER1 supplier, 3 engineering companies, 2 universities (leading in e-power and electromobility), an RTO and 3 SMEs. The partners have worked together closely in previous and ongoing projects, and have extensive knowhow in taking the step from new technology to innovative vehicles for real-world applications.
The core objective will be achieved through five technical objectives. 1) advanced hybrid physical and data-driven models and algorithms to enable a flexible and modular BMS suitable for a wide range of batteries. 2) Software for a fully connected and fully wireless BMS that acts as a communication server inside the vehicle E/E-architecture, the center of connection, on-board diagnostics and decision-taking for all battery-related information. 3) A scalable, fully wireless and self-tested BMS hardware that enables using different battery sizes at different operating voltage levels, and smart sensor integration. 4) Better battery utilization and exploitation using cloud-informed strategies and procedure. 5) A heterogeneous simulation toolchain and automated test methods.
The consortium includes 2 vehicle manufacturers, 2 TIER1 supplier, 3 engineering companies, 2 universities (leading in e-power and electromobility), an RTO and 3 SMEs. The partners have worked together closely in previous and ongoing projects, and have extensive knowhow in taking the step from new technology to innovative vehicles for real-world applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101137975 |
Start date: | 01-01-2024 |
End date: | 30-06-2027 |
Total budget - Public funding: | 5 672 894,38 Euro - 4 013 441,00 Euro |
Cordis data
Original description
The core objective of InnoBMS is to develop and demonstrate (TRL6) a future-ready best-in-class BMS hard- and software solution that maximizes battery utilization and performance for the user without negatively affecting battery life, even in extreme conditions, whilst continuously maintaining safety. Concretely, the InnoBMS proposal will deliver a 12% higher effective battery pack volumetric density, a 33% longer battery lifetime and a demonstrated lifetime of 15 years. The results will be demonstrated using novel testing methods that give a 36% reduction in the testing time of a BMS. The results will be demonstrated in two use cases, one light commercial vehicle (Fiat Doblo Electric) and one medium-duty van (IVECO eDaily). The key outcomes will enable a cost reduction of 12% and 9.7% for passenger cars and light-duty vehicles, respectively.The core objective will be achieved through five technical objectives. 1) advanced hybrid physical and data-driven models and algorithms to enable a flexible and modular BMS suitable for a wide range of batteries. 2) Software for a fully connected and fully wireless BMS that acts as a communication server inside the vehicle E/E-architecture, the center of connection, on-board diagnostics and decision-taking for all battery-related information. 3) A scalable, fully wireless and self-tested BMS hardware that enables using different battery sizes at different operating voltage levels, and smart sensor integration. 4) Better battery utilization and exploitation using cloud-informed strategies and procedure. 5) A heterogeneous simulation toolchain and automated test methods.
The consortium includes 2 vehicle manufacturers, 2 TIER1 supplier, 3 engineering companies, 2 universities (leading in e-power and electromobility), an RTO and 3 SMEs. The partners have worked together closely in previous and ongoing projects, and have extensive knowhow in taking the step from new technology to innovative vehicles for real-world applications.
Status
SIGNEDCall topic
HORIZON-CL5-2023-D5-01-02Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all