Summary
CBE4I aims at the development of a novel, fuel-flexible biomass updraft gasification based technology for a highly energy efficient, almost zero emission and zero waste process heat supply for flexible implementation at industrial settings satisfying the specific demands of industry. Low-value biomass residues which are available in large quantities shall be applied.
CBE4I shall provide either (i) heat at different temperature levels which can be applied for indirectly heated processes via product gas combustion in an almost zero-emission gas burner with integrated three-way catalyst flexibly coupled with different boiler types (hot water, thermal oil, steam) or (ii) process heat and a clean product gas via product gas extraction with integrated thermal and catalytic tar reforming for utilisation in gas burners for direct heating. A novel flue gas condensation concept with directly coupled heat pump shall boost efficiency up to 120% (related to the NCV of the fuel). A newly developed condensate treatment shall allow for a direct discharge into sewers and regarding ash utilisation a new concept for application of biomass ashes in fertilizer production shall be developed. Moreover, CBE4I shall include the necessary fuel pre-treatment technologies and fuel logistics suitable for industrial sites. The latter comprise space saving on-site fuel logistics and on-line fuel quality assessment based on a new intelligent crane system.
The methodology applied to reach these goals relies on technology development tasks (based on process simulations, CFD aided design of the single units, test plant construction, performance and evaluation of test runs), a technology assessment part covering risk assessments, LCAs, techno-economic, environmental and overall impact assessments as well as targeted dissemination activities. A market study shall investigate and define the framework conditions and application potentials of the CBE4I technology in different industrial sectors.
CBE4I shall provide either (i) heat at different temperature levels which can be applied for indirectly heated processes via product gas combustion in an almost zero-emission gas burner with integrated three-way catalyst flexibly coupled with different boiler types (hot water, thermal oil, steam) or (ii) process heat and a clean product gas via product gas extraction with integrated thermal and catalytic tar reforming for utilisation in gas burners for direct heating. A novel flue gas condensation concept with directly coupled heat pump shall boost efficiency up to 120% (related to the NCV of the fuel). A newly developed condensate treatment shall allow for a direct discharge into sewers and regarding ash utilisation a new concept for application of biomass ashes in fertilizer production shall be developed. Moreover, CBE4I shall include the necessary fuel pre-treatment technologies and fuel logistics suitable for industrial sites. The latter comprise space saving on-site fuel logistics and on-line fuel quality assessment based on a new intelligent crane system.
The methodology applied to reach these goals relies on technology development tasks (based on process simulations, CFD aided design of the single units, test plant construction, performance and evaluation of test runs), a technology assessment part covering risk assessments, LCAs, techno-economic, environmental and overall impact assessments as well as targeted dissemination activities. A market study shall investigate and define the framework conditions and application potentials of the CBE4I technology in different industrial sectors.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101122292 |
Start date: | 01-09-2023 |
End date: | 31-08-2026 |
Total budget - Public funding: | 4 974 688,75 Euro - 4 974 688,00 Euro |
Cordis data
Original description
CBE4I aims at the development of a novel, fuel-flexible biomass updraft gasification based technology for a highly energy efficient, almost zero emission and zero waste process heat supply for flexible implementation at industrial settings satisfying the specific demands of industry. Low-value biomass residues which are available in large quantities shall be applied.CBE4I shall provide either (i) heat at different temperature levels which can be applied for indirectly heated processes via product gas combustion in an almost zero-emission gas burner with integrated three-way catalyst flexibly coupled with different boiler types (hot water, thermal oil, steam) or (ii) process heat and a clean product gas via product gas extraction with integrated thermal and catalytic tar reforming for utilisation in gas burners for direct heating. A novel flue gas condensation concept with directly coupled heat pump shall boost efficiency up to 120% (related to the NCV of the fuel). A newly developed condensate treatment shall allow for a direct discharge into sewers and regarding ash utilisation a new concept for application of biomass ashes in fertilizer production shall be developed. Moreover, CBE4I shall include the necessary fuel pre-treatment technologies and fuel logistics suitable for industrial sites. The latter comprise space saving on-site fuel logistics and on-line fuel quality assessment based on a new intelligent crane system.
The methodology applied to reach these goals relies on technology development tasks (based on process simulations, CFD aided design of the single units, test plant construction, performance and evaluation of test runs), a technology assessment part covering risk assessments, LCAs, techno-economic, environmental and overall impact assessments as well as targeted dissemination activities. A market study shall investigate and define the framework conditions and application potentials of the CBE4I technology in different industrial sectors.
Status
SIGNEDCall topic
HORIZON-CL5-2022-D3-03-06Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all