BreathForDx | Establishing Exhaled Breath Aerosol (XBA) sampling for diagnosis and screening of respiratory infections

Summary
Respiratory infections resulted in >7 million deaths in 2020 and were responsible for 7 of the last 9 pandemics, causing trillions of €s in economic losses. Despite the importance of early detection for individual health and pandemic control, flawed sampling methods for respiratory infections limit the impact of highly-sensitive molecular diagnostics. BreathForDx’s overall goal is to tackle this problem by establishing exhaled breath aerosol (XBA) as a novel, evidence-based sample for respiratory infections in three use cases: diagnosis, screening, and antimicrobial resistance, using tuberculosis (TB) as a model infection. The project will leverage innovation in bioaerosol and material science, as well as the multidisciplinary (including academia, industry and NGOs) consortium’s track record of delivering transformative diagnostic innovation. More specifically, we will optimise an innovative, easy-to-use, scalable XBA sampling device, and compare it to a face mask sampling device coupled with rapid molecular detection in three clinical studies. We will evaluate the XBA sampling efficiency of these devices using the Respiratory Aerosol Sampling Chamber as a benchmark. Next, we will assess performance of the devices for diagnosis of TB and drug-resistance among symptomatic patients in a high burden EU country. In parallel, we will assess the feasibility of multiplexing XBA samples for multiple respiratory pathogens (i.e., TB, influenza, SARS-CoV-2) in a screening use case. Accuracy and feasibility data will be complemented by data on acceptability and usability, as well as cost-effectiveness and impact modelling to inform the implementation potential of the novel devices across different use cases. We envision a world in which a single breath sample, coupled with point-of-care molecular diagnostics, enables accessible and accurate pathogen and resistance detection of highly transmissible respiratory infections, thereby improving both individual and public health.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101094804
Start date: 01-01-2024
End date: 31-12-2026
Total budget - Public funding: 2 252 746,25 Euro - 2 252 746,00 Euro
Cordis data

Original description

Respiratory infections resulted in >7 million deaths in 2020 and were responsible for 7 of the last 9 pandemics, causing trillions of €s in economic losses. Despite the importance of early detection for individual health and pandemic control, flawed sampling methods for respiratory infections limit the impact of highly-sensitive molecular diagnostics. BreathForDx’s overall goal is to tackle this problem by establishing exhaled breath aerosol (XBA) as a novel, evidence-based sample for respiratory infections in three use cases: diagnosis, screening, and antimicrobial resistance, using tuberculosis (TB) as a model infection. The project will leverage innovation in bioaerosol and material science, as well as the multidisciplinary (including academia, industry and NGOs) consortium’s track record of delivering transformative diagnostic innovation. More specifically, we will optimise an innovative, easy-to-use, scalable XBA sampling device, and compare it to a face mask sampling device coupled with rapid molecular detection in three clinical studies. We will evaluate the XBA sampling efficiency of these devices using the Respiratory Aerosol Sampling Chamber as a benchmark. Next, we will assess performance of the devices for diagnosis of TB and drug-resistance among symptomatic patients in a high burden EU country. In parallel, we will assess the feasibility of multiplexing XBA samples for multiple respiratory pathogens (i.e., TB, influenza, SARS-CoV-2) in a screening use case. Accuracy and feasibility data will be complemented by data on acceptability and usability, as well as cost-effectiveness and impact modelling to inform the implementation potential of the novel devices across different use cases. We envision a world in which a single breath sample, coupled with point-of-care molecular diagnostics, enables accessible and accurate pathogen and resistance detection of highly transmissible respiratory infections, thereby improving both individual and public health.

Status

SIGNED

Call topic

HORIZON-HLTH-2022-DISEASE-07-02

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.1 Health
HORIZON.2.1.0 Cross-cutting call topics
HORIZON-HLTH-2022-DISEASE-07
HORIZON-HLTH-2022-DISEASE-07-02 Pandemic preparedness
HORIZON.2.1.4 Infectious Diseases, including poverty-related and neglected diseases
HORIZON-HLTH-2022-DISEASE-07
HORIZON-HLTH-2022-DISEASE-07-02 Pandemic preparedness