Summary
The 6G-DISAC project aims to bring the integrated sensing and communication (ISAC) vision to life by adopting a holistic perspective with widely distributed intelligent infrastructure compatible with real-world integration constraints and future wireless network flexibility requirements. The project addresses both fundamental and practical challenges, such as tracking connected UEs and passive objects, performing ISAC with many distributed base stations, efficient distributed signal processing and machine learning for semantic ISAC, incorporating extremely large MIMO technologies and reconfigurable intelligent surfaces, and intelligent sensing activation.
6G-DISAC will focus on the distributed implementation of ISAC, unlocking real sensing applications and providing a multi-perspective view of networks in space and time for tangible communication gains. It will bridge theoretical approaches with operational and standards-compatible distributed joint communication and sensing.
6G-DISAC brings together world-leading actors across the value chain, including operators, network vendors, verticals, SMEs, research laboratories, and academic institutions. Together, the 6G-DISAC partners will define use cases, requirements, and design an innovative network architecture. They will also develop novel physical-layer waveforms, distributed sensing and communications methods, optimised resource allocation methods, and protocols. Several demonstrations will validate the key 6G-DISAC concepts. This project will revolutionise various applications, from extended reality and robot-human interaction to vehicular safety functions and improving communication key performance indicators with sensing-aided communications.
6G-DISAC will focus on the distributed implementation of ISAC, unlocking real sensing applications and providing a multi-perspective view of networks in space and time for tangible communication gains. It will bridge theoretical approaches with operational and standards-compatible distributed joint communication and sensing.
6G-DISAC brings together world-leading actors across the value chain, including operators, network vendors, verticals, SMEs, research laboratories, and academic institutions. Together, the 6G-DISAC partners will define use cases, requirements, and design an innovative network architecture. They will also develop novel physical-layer waveforms, distributed sensing and communications methods, optimised resource allocation methods, and protocols. Several demonstrations will validate the key 6G-DISAC concepts. This project will revolutionise various applications, from extended reality and robot-human interaction to vehicular safety functions and improving communication key performance indicators with sensing-aided communications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101139130 |
Start date: | 01-01-2024 |
End date: | 31-12-2026 |
Total budget - Public funding: | 4 231 312,00 Euro - 3 999 728,00 Euro |
Cordis data
Original description
The 6G-DISAC project aims to bring the integrated sensing and communication (ISAC) vision to life by adopting a holistic perspective with widely distributed intelligent infrastructure compatible with real-world integration constraints and future wireless network flexibility requirements. The project addresses both fundamental and practical challenges, such as tracking connected UEs and passive objects, performing ISAC with many distributed base stations, efficient distributed signal processing and machine learning for semantic ISAC, incorporating extremely large MIMO technologies and reconfigurable intelligent surfaces, and intelligent sensing activation.6G-DISAC will focus on the distributed implementation of ISAC, unlocking real sensing applications and providing a multi-perspective view of networks in space and time for tangible communication gains. It will bridge theoretical approaches with operational and standards-compatible distributed joint communication and sensing.
6G-DISAC brings together world-leading actors across the value chain, including operators, network vendors, verticals, SMEs, research laboratories, and academic institutions. Together, the 6G-DISAC partners will define use cases, requirements, and design an innovative network architecture. They will also develop novel physical-layer waveforms, distributed sensing and communications methods, optimised resource allocation methods, and protocols. Several demonstrations will validate the key 6G-DISAC concepts. This project will revolutionise various applications, from extended reality and robot-human interaction to vehicular safety functions and improving communication key performance indicators with sensing-aided communications.
Status
SIGNEDCall topic
HORIZON-JU-SNS-2023-STREAM-B-01-02Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all