FUEL-UP | Production of advanced bioFUELS via pyrolysis and UPgrading of 100% biogenic residues for aviation and marine sector, including full valorisation of side streams

Summary
FUEL-UP project aims at producing simultaneously the key renewable SAF and marine fuels from 100% biogenic feedstocks (primarily forestry residues) through pyrolysis and downstream upgrading of pyrolysis oils to advanced biofuels, reducing GHG emissions of the important aviation and marine transport sectors. FUEL-UP will demonstrate at TRL6-7 the production of sufficient aviation and marine fuel in the project, transforming 1000 L HPO to 450-500 L SAF, 300-350 L marine diesel and 100-200 L marine fuel Naphtha/Bio-methanol co-blend for testing. The key challenges are to de-risk and optimize stabilisation, deoxygenation, hydrodeoxygenation, hydrotreatment and hydro-isomerisation steps; including optimisation of catalysts and scalability. FUEL-UP will ensure the fuel quality meets standards and engine specifications. The produced SAF will be tested according to aviation standards (Tier 1, 2 & 2.5) to qualify them with D4054 certification and provide a strategy for fuel certification through introduction to EU Clearinghouse. The produced marine biofuels streams fuel quality (marine diesel and Naphtha enhanced Bio-methanol co-blend) will be assessed with marine engine testing performed according to ISO 8217 and ISO 8178 standards. FUEL-UP will also maximise the valorisation of all carbon side streams (gaseous and aqueous), with aqueous phase treatment and extraction up to 80%, resulting in at least 200 L valuable compounds /t HPO, followed by subsequent conversion into high quality biogas. The heavy component of Naphtha fraction will be evaluated for aromatisation by continuous catalytic reforming to produce solvents. Environmental impact of the value chain will be assessed to show up to 80% GHG emission reduction compared to fossil fuels and provide scenarios for green hydrogen production. Process engineering will ensure scale-up of technologies to reach commercial scale by 2030 and replication in 10 sites by 2035 and 25 sites by 2040, allowing production of >2Mt fuels.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101136123
Start date: 01-01-2024
End date: 31-12-2027
Total budget - Public funding: - 8 417 003,00 Euro
Cordis data

Original description

FUEL-UP project aims at producing simultaneously the key renewable SAF and marine fuels from 100% biogenic feedstocks (primarily forestry residues) through pyrolysis and downstream upgrading of pyrolysis oils to advanced biofuels, reducing GHG emissions of the important aviation and marine transport sectors. FUEL-UP will demonstrate at TRL6-7 the production of sufficient aviation and marine fuel in the project, transforming 1000 L HPO to 450-500 L SAF, 300-350 L marine diesel and 100-200 L marine fuel Naphtha/Bio-methanol co-blend for testing. The key challenges are to de-risk and optimize stabilisation, deoxygenation, hydrodeoxygenation, hydrotreatment and hydro-isomerisation steps; including optimisation of catalysts and scalability. FUEL-UP will ensure the fuel quality meets standards and engine specifications. The produced SAF will be tested according to aviation standards (Tier 1, 2 & 2.5) to qualify them with D4054 certification and provide a strategy for fuel certification through introduction to EU Clearinghouse. The produced marine biofuels streams fuel quality (marine diesel and Naphtha enhanced Bio-methanol co-blend) will be assessed with marine engine testing performed according to ISO 8217 and ISO 8178 standards. FUEL-UP will also maximise the valorisation of all carbon side streams (gaseous and aqueous), with aqueous phase treatment and extraction up to 80%, resulting in at least 200 L valuable compounds /t HPO, followed by subsequent conversion into high quality biogas. The heavy component of Naphtha fraction will be evaluated for aromatisation by continuous catalytic reforming to produce solvents. Environmental impact of the value chain will be assessed to show up to 80% GHG emission reduction compared to fossil fuels and provide scenarios for green hydrogen production. Process engineering will ensure scale-up of technologies to reach commercial scale by 2030 and replication in 10 sites by 2035 and 25 sites by 2040, allowing production of >2Mt fuels.

Status

SIGNED

Call topic

HORIZON-CL5-2023-D3-01-06

Update Date

12-03-2024
Images
No images available.
Geographical location(s)