EXTRA-BRAIN | Explainable Trustworthy brain-like AI for Data Intensive Applications

Summary
In parallel to the current developments in the so-called narrow artificial intelligence (AI) realm, there is an urgent demand for more universal, general AI approaches that can operate across a wider spectrum of application domains with varying data characteristics. It is expected that the emerging sustainable AI methods can be efficiently deployed in the edge-cloud continuum on different hardware platforms and computing infrastructure depending on the real-world task scenarios and constraints including the limited energy budget. In response to this growing demand and emerging trends we propose to adopt a brain-like approach to AI system design due to its promising potential for functional flexibility, hardware friendliness as well as energy efficiency among others. To this end, EXTRA-BRAIN is aimed at developing a new generation of AI solutions based on brain-like neural networks that enable us to overcome key limitations of the current state-of-the-art methods, exemplified by deep learning, such as limited cross-task generalisation and extrapolation to novel domains (bounded reliability), excessive dependence on costly annotated data as well as extensive training and validation processes with heavy demand for compute resources at high energy cost, to name a few. The core brain-like neural network design in our approach derives from the accumulated computational neuroscience insights into the brain's working principles of information processing, key learning schemes and neuroanatomical structures that underlie the brain's perceptual/cognitive phenomena and its functional flexibility. Furthermore, these novel models are supported by data optimisation pipelines, which improve data quality, security and reduce the costs of assembling suitable training data, and an explainability framework to empower the human user. The proposed EXTRA-BRAIN framework will be examined in a diverse set of use cases with different hardware demands in the edge-cloud continuum.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101135809
Start date: 01-01-2024
End date: 28-02-2027
Total budget - Public funding: 4 994 312,50 Euro - 4 994 312,00 Euro
Cordis data

Original description

In parallel to the current developments in the so-called narrow artificial intelligence (AI) realm, there is an urgent demand for more universal, general AI approaches that can operate across a wider spectrum of application domains with varying data characteristics. It is expected that the emerging sustainable AI methods can be efficiently deployed in the edge-cloud continuum on different hardware platforms and computing infrastructure depending on the real-world task scenarios and constraints including the limited energy budget. In response to this growing demand and emerging trends we propose to adopt a brain-like approach to AI system design due to its promising potential for functional flexibility, hardware friendliness as well as energy efficiency among others. To this end, EXTRA-BRAIN is aimed at developing a new generation of AI solutions based on brain-like neural networks that enable us to overcome key limitations of the current state-of-the-art methods, exemplified by deep learning, such as limited cross-task generalisation and extrapolation to novel domains (bounded reliability), excessive dependence on costly annotated data as well as extensive training and validation processes with heavy demand for compute resources at high energy cost, to name a few. The core brain-like neural network design in our approach derives from the accumulated computational neuroscience insights into the brain's working principles of information processing, key learning schemes and neuroanatomical structures that underlie the brain's perceptual/cognitive phenomena and its functional flexibility. Furthermore, these novel models are supported by data optimisation pipelines, which improve data quality, security and reduce the costs of assembling suitable training data, and an explainability framework to empower the human user. The proposed EXTRA-BRAIN framework will be examined in a diverse set of use cases with different hardware demands in the edge-cloud continuum.

Status

SIGNED

Call topic

HORIZON-CL4-2023-HUMAN-01-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Artificial Intelligence, Data and Robotics Partnership (ADR)
ADR Partnership Call 2023
HORIZON-CL4-2023-HUMAN-01-01 Efficient trustworthy AI - making the best of data (AI, Data and Robotics Partnership) (RIA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.0 Cross-cutting call topics
HORIZON-CL4-2023-HUMAN-01-CNECT
HORIZON-CL4-2023-HUMAN-01-01 Efficient trustworthy AI - making the best of data (AI, Data and Robotics Partnership) (RIA)
HORIZON.2.4.5 Artificial Intelligence and Robotics
HORIZON-CL4-2023-HUMAN-01-CNECT
HORIZON-CL4-2023-HUMAN-01-01 Efficient trustworthy AI - making the best of data (AI, Data and Robotics Partnership) (RIA)