Summary
The idea of Joint communication and sensing (JCS) capabilities is a revolutionary and innovative solution. A single system has the potential to offer significant advances in various fields, such as smart transportation, smart cities, smart homes, healthcare, security, and environmental monitoring. iSEE-6G extends beyond JCS and propose a Joint Communication, Computation, Sensing, and Power transfer (JCCSP) unified radio platform, which includes all support elements of the proposed solutions in future 6G networks. By integrating, exploiting, and supporting 6G key enabling technologies, iSEE-6G offers a) JCCSP-oriented novel intelligent reconfigurable surfaces (RIS) and agile beamforming array solutions; b) JCCSP-optimized physical layer design including waveform design, frame structure design, channel modeling, precoding/beamforming with respect to open radio access network (O-RAN) architectural paradigm; c) JCCSP-enabled cross-layer schemes design under new capabilities in terms of service-oriented network architecture; and d) JCCSP-implemented system-level solutions for providing new functionalities towards a cell-free 6G network. The iSEE-6G Proof-of-Concept (PoC) focuses in JCCSP use cases in aerial corridors, where UAVs with various roles providing different services coexist and coordinate with each other. In IMEC’s testbed static distributed RUs, and vehicular UEs are additionally included for an emergency response incident. The UAVs monitor the area, estimate and report accurate positioning and provide situational awareness through integrated sensing. In ORO’s testbed 5G waveforms based JCCSP exploit the KPI collection capabilities of it. The operation of the testbed will be extended at an outdoor venue, where UAVs and IoT devices will be deployed to test the Wireless Power Transfer (WPT) capabilities. Edge computational power is used for Public Protection and Desaster Relief (PPDR) monitoring and JCCSP-as-a-Service implementation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101139291 |
Start date: | 01-01-2024 |
End date: | 31-12-2026 |
Total budget - Public funding: | 4 221 373,75 Euro - 3 999 523,00 Euro |
Cordis data
Original description
The idea of Joint communication and sensing (JCS) capabilities is a revolutionary and innovative solution. A single system has the potential to offer significant advances in various fields, such as smart transportation, smart cities, smart homes, healthcare, security, and environmental monitoring. iSEE-6G extends beyond JCS and propose a Joint Communication, Computation, Sensing, and Power transfer (JCCSP) unified radio platform, which includes all support elements of the proposed solutions in future 6G networks. By integrating, exploiting, and supporting 6G key enabling technologies, iSEE-6G offers a) JCCSP-oriented novel intelligent reconfigurable surfaces (RIS) and agile beamforming array solutions; b) JCCSP-optimized physical layer design including waveform design, frame structure design, channel modeling, precoding/beamforming with respect to open radio access network (O-RAN) architectural paradigm; c) JCCSP-enabled cross-layer schemes design under new capabilities in terms of service-oriented network architecture; and d) JCCSP-implemented system-level solutions for providing new functionalities towards a cell-free 6G network. The iSEE-6G Proof-of-Concept (PoC) focuses in JCCSP use cases in aerial corridors, where UAVs with various roles providing different services coexist and coordinate with each other. In IMEC’s testbed static distributed RUs, and vehicular UEs are additionally included for an emergency response incident. The UAVs monitor the area, estimate and report accurate positioning and provide situational awareness through integrated sensing. In ORO’s testbed 5G waveforms based JCCSP exploit the KPI collection capabilities of it. The operation of the testbed will be extended at an outdoor venue, where UAVs and IoT devices will be deployed to test the Wireless Power Transfer (WPT) capabilities. Edge computational power is used for Public Protection and Desaster Relief (PPDR) monitoring and JCCSP-as-a-Service implementation.Status
SIGNEDCall topic
HORIZON-JU-SNS-2023-STREAM-B-01-02Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all