BlueBARGE | Blue Bunkering of Anchored ships with Renewable Generated Electricity

Summary
The shipping industry is responsible for around 3% of global greenhouse gas emissions, and this is expected to increase as global trade and shipping activity continues to grow. As such, reducing emissions from shipping is an important part of global efforts to tackle climate change. In recent years, policies and legislation, mainly focusing on environmental sustainability, have pushed international shipping toward the process of its decarbonization. Regulatory bodies are pressing on the maritime world by adopting ambitious targets and by introducing a number of initiatives that will facilitate the transition to a sustainable future, including the International Maritime Organization's strategy to reduce greenhouse gas emissions from shipping, which aims to halve emissions from the sector by 2050 compared to 2008 levels.

To this end, BlueBARGE will design, develop and demonstrate an optimum power-barge solution to mainly support offshore power supply to moored and anchored vessels, limiting local polluting emissions and global GHG footprint in a life cycle perspective, following a modular, scalable, adaptable and flexible design approach which will facilitate its commercialisation by 2030. The proposed power-barge solution will consider different alternatives as containerised power supply modules in a variety of configurations, where battery modules will serve as basis due to their high energy efficiency and readiness level, and other considered modules including hydrogen fuel cells and hydrogen generators. The project will address electrical integration issues, interfacing challenges of the barge with ships, ports and local grid, operational safety and regulatory compliance aspects, delivering a high-readiness and complete “power bunkering” solution. Overall, the BlueBARGE project’s full integrated system aims at contributing to the shift of the maritime industry towards the goals of electrification and decarbonisation at an EU and international level.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101138694
Start date: 01-01-2024
End date: 31-12-2026
Total budget - Public funding: 11 334 100,00 Euro - 8 498 001,00 Euro
Cordis data

Original description

The shipping industry is responsible for around 3% of global greenhouse gas emissions, and this is expected to increase as global trade and shipping activity continues to grow. As such, reducing emissions from shipping is an important part of global efforts to tackle climate change. In recent years, policies and legislation, mainly focusing on environmental sustainability, have pushed international shipping toward the process of its decarbonization. Regulatory bodies are pressing on the maritime world by adopting ambitious targets and by introducing a number of initiatives that will facilitate the transition to a sustainable future, including the International Maritime Organization's strategy to reduce greenhouse gas emissions from shipping, which aims to halve emissions from the sector by 2050 compared to 2008 levels.

To this end, BlueBARGE will design, develop and demonstrate an optimum power-barge solution to mainly support offshore power supply to moored and anchored vessels, limiting local polluting emissions and global GHG footprint in a life cycle perspective, following a modular, scalable, adaptable and flexible design approach which will facilitate its commercialisation by 2030. The proposed power-barge solution will consider different alternatives as containerised power supply modules in a variety of configurations, where battery modules will serve as basis due to their high energy efficiency and readiness level, and other considered modules including hydrogen fuel cells and hydrogen generators. The project will address electrical integration issues, interfacing challenges of the barge with ships, ports and local grid, operational safety and regulatory compliance aspects, delivering a high-readiness and complete “power bunkering” solution. Overall, the BlueBARGE project’s full integrated system aims at contributing to the shift of the maritime industry towards the goals of electrification and decarbonisation at an EU and international level.

Status

SIGNED

Call topic

HORIZON-CL5-2023-D5-01-14

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Zero Emission Waterborne Transport Partnership (ZEWT)
ZEWT Partnership Call 2023
HORIZON-CL5-2023-D5-01-14 Developing a flexible offshore supply of zero emission auxiliary power for ships moored or anchored at sea deployable before 2030 (ZEWT Partnership)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.6 Industrial Competitiveness in Transport
HORIZON-CL5-2023-D5-01
HORIZON-CL5-2023-D5-01-14 Developing a flexible offshore supply of zero emission auxiliary power for ships moored or anchored at sea deployable before 2030 (ZEWT Partnership)
HORIZON.2.5.7 Clean, Safe and Accessible Transport and Mobility
HORIZON-CL5-2023-D5-01
HORIZON-CL5-2023-D5-01-14 Developing a flexible offshore supply of zero emission auxiliary power for ships moored or anchored at sea deployable before 2030 (ZEWT Partnership)