Summary
Climate-resilient sunflower crops can help to reduce the EU dependency on imports of vegetable oils and proteins shifting towards sustainable alternatives, to mitigate the impact of agricultural production on water use and greenhouse gas emissions, to grow resources for pollinators, and to promote biodiversity.
HelEx will generate the knowledge and use innovative tools to accelerate the breeding of sunflower varieties adapted to extreme drought and heat stresses, while improving their environmental impact and assessing their socio-economic value of the resulting innovations along the value chains. HelEx will thereby consider two related groups of traits increasingly impacted by climate change, i.e. the eco-systemic service to pollinators and seed quality.
For this, HelEx brings together scientists, SMEs, and industries representing an international consortium of experts in sunflower ecology, physiology and genomics; plant biotechnology and breeding; pollinator biology and ecology; environmental impact assessment and feedstock processing; and socioeconomic assessment at different scales.
This HelEx multi-disciplinary consortium will explore the genetic and molecular processes involved in tolerance to drought and heat in wild extremophile Helianthus species, and identify favorable wild alleles introgressed into cultivated sunflower, for seed quality and pollinator attractiveness resilience (WP1). These processes will be transfered using classical marker-assisted selection and innovative genome editing approaches (WP2), and the environmental and biodiversity impact of these new climate-smart sunflowers assessed (WP3). HelEx will investigate the socio-economic impact and benefits in relevant value chains for different feedstock (WP4). Our communication strategy (WP5) will engage a variety of societal stakeholders to ensure feedback and enhance project progress and outcomes, and make transparent the broader dimensions of plant biotechnology, biodiversity, and benefit sharing
HelEx will generate the knowledge and use innovative tools to accelerate the breeding of sunflower varieties adapted to extreme drought and heat stresses, while improving their environmental impact and assessing their socio-economic value of the resulting innovations along the value chains. HelEx will thereby consider two related groups of traits increasingly impacted by climate change, i.e. the eco-systemic service to pollinators and seed quality.
For this, HelEx brings together scientists, SMEs, and industries representing an international consortium of experts in sunflower ecology, physiology and genomics; plant biotechnology and breeding; pollinator biology and ecology; environmental impact assessment and feedstock processing; and socioeconomic assessment at different scales.
This HelEx multi-disciplinary consortium will explore the genetic and molecular processes involved in tolerance to drought and heat in wild extremophile Helianthus species, and identify favorable wild alleles introgressed into cultivated sunflower, for seed quality and pollinator attractiveness resilience (WP1). These processes will be transfered using classical marker-assisted selection and innovative genome editing approaches (WP2), and the environmental and biodiversity impact of these new climate-smart sunflowers assessed (WP3). HelEx will investigate the socio-economic impact and benefits in relevant value chains for different feedstock (WP4). Our communication strategy (WP5) will engage a variety of societal stakeholders to ensure feedback and enhance project progress and outcomes, and make transparent the broader dimensions of plant biotechnology, biodiversity, and benefit sharing
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101081974 |
Start date: | 01-05-2023 |
End date: | 30-04-2027 |
Total budget - Public funding: | 5 184 372,50 Euro - 4 997 682,00 Euro |
Cordis data
Original description
Climate-resilient sunflower crops can help to reduce the EU dependency on imports of vegetable oils and proteins shifting towards sustainable alternatives, to mitigate the impact of agricultural production on water use and greenhouse gas emissions, to grow resources for pollinators, and to promote biodiversity.HelEx will generate the knowledge and use innovative tools to accelerate the breeding of sunflower varieties adapted to extreme drought and heat stresses, while improving their environmental impact and assessing their socio-economic value of the resulting innovations along the value chains. HelEx will thereby consider two related groups of traits increasingly impacted by climate change, i.e. the eco-systemic service to pollinators and seed quality.
For this, HelEx brings together scientists, SMEs, and industries representing an international consortium of experts in sunflower ecology, physiology and genomics; plant biotechnology and breeding; pollinator biology and ecology; environmental impact assessment and feedstock processing; and socioeconomic assessment at different scales.
This HelEx multi-disciplinary consortium will explore the genetic and molecular processes involved in tolerance to drought and heat in wild extremophile Helianthus species, and identify favorable wild alleles introgressed into cultivated sunflower, for seed quality and pollinator attractiveness resilience (WP1). These processes will be transfered using classical marker-assisted selection and innovative genome editing approaches (WP2), and the environmental and biodiversity impact of these new climate-smart sunflowers assessed (WP3). HelEx will investigate the socio-economic impact and benefits in relevant value chains for different feedstock (WP4). Our communication strategy (WP5) will engage a variety of societal stakeholders to ensure feedback and enhance project progress and outcomes, and make transparent the broader dimensions of plant biotechnology, biodiversity, and benefit sharing
Status
SIGNEDCall topic
HORIZON-CL6-2022-CIRCBIO-02-02-two-stageUpdate Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all