GRASP | GREEN AGILE SEMICONDUCTOR PRODUCTION

Summary
Flexible Electronics has been one of the fastest developing technologies in recent decades. The traditional path is electronic components such as silicon chips (e.g., microcontrollers) integrated onto flexible substrates called “hybrid integration” or “flexible hybrid electronics” in integrated smart systems. We believe that this approach is not a viable long-term solution for future high-volume, low-cost and conformable integrated smart systems. Our vision is an integrated smart system that is built with only flexible electronic components including analogue circuitry, digital logic and memories. We call such a system a “Natively Flexible Integrated Smart System” or NFISS. NFISSes will enable new products in the Fast Moving Consumer Goods and healthcare wearables that have not been possible before because conventional silicon chips are too costly, too bulky and not conformable.

The project will develop a flexible microcontroller unit (FlexMCU), which is the key component missing to enable NFISSes. The FlexMCU must be a low-power chip integrating a variety of functionality to address the functional requirements of the applications in FMCG and healthcare wearables. A novel hybrid complementary low-power thin-film transistor technology (100x per-transistor power reduction) will be developed to fabricate the FlexMCU in a sustainable flexible chip fab with 100-1000x less environmental footprint. The FlexMCU design is tailored to a specific domain composed of an open-source RISC-V based processor with built-in security features, an analogue frontend, on-chip memory and other peripherals. Then, the FlexMCU will be assembled using novel assembly and bonding methods onto a flexible film, which is, in turn, integrated onto a flexible substrate along with other flexible electronic components to build the first proof-of-concept NFISS that will be validated on two healthcare wearable applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101134936
Start date: 01-01-2024
End date: 31-12-2027
Total budget - Public funding: 3 220 641,75 Euro - 3 215 641,00 Euro
Cordis data

Original description

Flexible Electronics has been one of the fastest developing technologies in recent decades. The traditional path is electronic components such as silicon chips (e.g., microcontrollers) integrated onto flexible substrates called “hybrid integration” or “flexible hybrid electronics” in integrated smart systems. We believe that this approach is not a viable long-term solution for future high-volume, low-cost and conformable integrated smart systems. Our vision is an integrated smart system that is built with only flexible electronic components including analogue circuitry, digital logic and memories. We call such a system a “Natively Flexible Integrated Smart System” or NFISS. NFISSes will enable new products in the Fast Moving Consumer Goods and healthcare wearables that have not been possible before because conventional silicon chips are too costly, too bulky and not conformable.

The project will develop a flexible microcontroller unit (FlexMCU), which is the key component missing to enable NFISSes. The FlexMCU must be a low-power chip integrating a variety of functionality to address the functional requirements of the applications in FMCG and healthcare wearables. A novel hybrid complementary low-power thin-film transistor technology (100x per-transistor power reduction) will be developed to fabricate the FlexMCU in a sustainable flexible chip fab with 100-1000x less environmental footprint. The FlexMCU design is tailored to a specific domain composed of an open-source RISC-V based processor with built-in security features, an analogue frontend, on-chip memory and other peripherals. Then, the FlexMCU will be assembled using novel assembly and bonding methods onto a flexible film, which is, in turn, integrated onto a flexible substrate along with other flexible electronic components to build the first proof-of-concept NFISS that will be validated on two healthcare wearable applications.

Status

SIGNED

Call topic

HORIZON-CL4-2023-DIGITAL-EMERGING-01-11

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.0 Cross-cutting call topics
HORIZON-CL4-2023-DIGITAL-EMERGING-01-CNECT
HORIZON-CL4-2023-DIGITAL-EMERGING-01-11 Low TRL research in micro-electronics and integration technologies for industrial solutions (RIA)
HORIZON.2.4.3 Emerging enabling technologies
HORIZON-CL4-2023-DIGITAL-EMERGING-01-CNECT
HORIZON-CL4-2023-DIGITAL-EMERGING-01-11 Low TRL research in micro-electronics and integration technologies for industrial solutions (RIA)