Summary
Antiviral drugs will be key in the management of future virus outbreaks. For each virus family with epidemic/pandemic potential, stockpiles of potent drugs are needed that can be deployed when a new pathogen emerges. Such broader-acting drugs (targeting conserved viral functions) are needed as of “day one” of an outbreak, for treatment and prophylaxis (e.g., in HCW and frail patients). In combination with quarantine measures, such drugs will delay (global) spread, allowing time for vaccine-development. Since the 2003 SARS outbreak, PANVIPREP’s core partners have successfully collaborated in leading European antiviral drug research projects. This provides a solid scientific basis in combination with translational drug discovery expertise. The team includes virologists, biochemists, structural biologists, medicinal chemists and pharmacokinetics experts. Previously developed know-how and toolboxes will be a major asset to achieve immediate impact. PANVIPREP aims to greatly expand the antiviral portfolio and identify novel druggable targets of high-risk RNA viruses. Hits will be identified through (i) phenotypic antiviral screening of compound libraries (ii) structure-based drug design, (iii) in silico screening, supported by the latest machine-learning methods. We will deliver 25 to 50 high-quality, broad(er)-spectrum (pan-genus/pan-family) hit molecules/hit series. Two of these will be developed to the early lead stage, including proof of concept in animal infection models. Remaining hits will serve as chemical tool-compounds to explore mechanisms of action thereby identifying novel druggable targets in RNA virus replication. This in turn will accelerate target-based drug design efforts. The workflow will integrate best practices in antiviral drug discovery with a range of methodological innovations, including AI-based methods, thus renovating and accelerating the antiviral hit discovery pipeline future use and contributing to pandemic preparedness.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101137229 |
Start date: | 01-01-2024 |
End date: | 31-12-2027 |
Total budget - Public funding: | 7 999 298,25 Euro - 7 999 295,00 Euro |
Cordis data
Original description
Antiviral drugs will be key in the management of future virus outbreaks. For each virus family with epidemic/pandemic potential, stockpiles of potent drugs are needed that can be deployed when a new pathogen emerges. Such broader-acting drugs (targeting conserved viral functions) are needed as of “day one” of an outbreak, for treatment and prophylaxis (e.g., in HCW and frail patients). In combination with quarantine measures, such drugs will delay (global) spread, allowing time for vaccine-development. Since the 2003 SARS outbreak, PANVIPREP’s core partners have successfully collaborated in leading European antiviral drug research projects. This provides a solid scientific basis in combination with translational drug discovery expertise. The team includes virologists, biochemists, structural biologists, medicinal chemists and pharmacokinetics experts. Previously developed know-how and toolboxes will be a major asset to achieve immediate impact. PANVIPREP aims to greatly expand the antiviral portfolio and identify novel druggable targets of high-risk RNA viruses. Hits will be identified through (i) phenotypic antiviral screening of compound libraries (ii) structure-based drug design, (iii) in silico screening, supported by the latest machine-learning methods. We will deliver 25 to 50 high-quality, broad(er)-spectrum (pan-genus/pan-family) hit molecules/hit series. Two of these will be developed to the early lead stage, including proof of concept in animal infection models. Remaining hits will serve as chemical tool-compounds to explore mechanisms of action thereby identifying novel druggable targets in RNA virus replication. This in turn will accelerate target-based drug design efforts. The workflow will integrate best practices in antiviral drug discovery with a range of methodological innovations, including AI-based methods, thus renovating and accelerating the antiviral hit discovery pipeline future use and contributing to pandemic preparedness.Status
SIGNEDCall topic
HORIZON-HLTH-2023-DISEASE-03-04Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all