QU-PIC | Quantum Universal Photonics Integrated Circuit platform

Summary
Quantum technology holds the promise of enabling next generation computing, communications and sensing systems. However, the size, cost and scalability of current devices prevents them from reaching their full potential. Photonics is one of the key enabling technologies for quantum technology. In particular, photonics integrated circuits (PICs) with their wafer-level manufacturing based on microfabrication technologies can provide the reduction in size and cost and enable next generation scalable quantum technologies. To fully achieve this goal, an universal PIC technology that can serve most quantum applications is needed.

In QU-PIC, we selected the Al2O3 integrated photonics platform as backbone technology for the development of quantum PICs thanks to its excellent low propagation loss performance and wide operating spectral region from the ultraviolet (200 nm) until the mid-infrared. A large range of PIC building blocks is developed in QU-PIC, focusing on areas where materials or integration technologies are not yet available. Several light sources, including multiwavelength tunable lasers with operation at 399 nm, 411 nm and 935 nm on the PIC, UVC external cavity lasers emitting at 280 nm, sources of squeezed photons, single photon detectors, programmable ASICs and the required packaging and assembly technologies will be investigated. An open PDK will group all the developed quantum building blocks to accelerate innovation from the initial idea to an actually manufactured system. Two application demonstrators will be implemented using the developed building blocks, namely a source of GKP states for quantum processing and an atomic clock based on Yb+ ions for quantum sensing. It is the ambition of QU-PIC to secure a full European supply chain to establish Europe’s Sovereignty and manufacturing capabilities in photonics integrated circuits for quantum.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101135845
Start date: 01-01-2024
End date: 31-12-2027
Total budget - Public funding: - 5 947 868,00 Euro
Cordis data

Original description

Quantum technology holds the promise of enabling next generation computing, communications and sensing systems. However, the size, cost and scalability of current devices prevents them from reaching their full potential. Photonics is one of the key enabling technologies for quantum technology. In particular, photonics integrated circuits (PICs) with their wafer-level manufacturing based on microfabrication technologies can provide the reduction in size and cost and enable next generation scalable quantum technologies. To fully achieve this goal, an universal PIC technology that can serve most quantum applications is needed.

In QU-PIC, we selected the Al2O3 integrated photonics platform as backbone technology for the development of quantum PICs thanks to its excellent low propagation loss performance and wide operating spectral region from the ultraviolet (200 nm) until the mid-infrared. A large range of PIC building blocks is developed in QU-PIC, focusing on areas where materials or integration technologies are not yet available. Several light sources, including multiwavelength tunable lasers with operation at 399 nm, 411 nm and 935 nm on the PIC, UVC external cavity lasers emitting at 280 nm, sources of squeezed photons, single photon detectors, programmable ASICs and the required packaging and assembly technologies will be investigated. An open PDK will group all the developed quantum building blocks to accelerate innovation from the initial idea to an actually manufactured system. Two application demonstrators will be implemented using the developed building blocks, namely a source of GKP states for quantum processing and an atomic clock based on Yb+ ions for quantum sensing. It is the ambition of QU-PIC to secure a full European supply chain to establish Europe’s Sovereignty and manufacturing capabilities in photonics integrated circuits for quantum.

Status

SIGNED

Call topic

HORIZON-CL4-2023-DIGITAL-EMERGING-01-40

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.0 Cross-cutting call topics
HORIZON-CL4-2023-DIGITAL-EMERGING-01-CNECT
HORIZON-CL4-2023-DIGITAL-EMERGING-01-40 Quantum Photonic Integrated Circuit technologies (RIA)
HORIZON.2.4.7 Advanced Computing and Big Data
HORIZON-CL4-2023-DIGITAL-EMERGING-01-CNECT
HORIZON-CL4-2023-DIGITAL-EMERGING-01-40 Quantum Photonic Integrated Circuit technologies (RIA)