SWEEPICS | SWEEPICS: SWEPT LASERS FOR NON-INVASIVE DIAGNOSTICS

Summary
Swept lasers have enabled paradigm-shifts in biomedical imaging and diagnostics. The SWEEPICS project will research and develop the next generation of swept source lasers with flexible pulse modulation capability, high power output, multi-wavelength coherent output and multi-application potential. SWEEPICS will develop new laser-based systems: a high-speed, high resolution multiphoton high content screening system, a multimodal non-invasive imaging system based on high-speed photoacoustics and multiphoton microscopy, and a smart microscope for accelerated acquisition&diagnostics. The inter-disciplinary consortium of European partners will showcase the SWEEPICS technology in cutting-edge use cases based on novel vascular organoids for animal-free drug-testing and infection studies.

This disruptive SWEEPICS technology will rapidly generate high-resolution diagnostic imaging in three-dimension, where the high imaging depth permits penetrating millimeter deep into tissue-like organoids and imaging at high temporal and spatial resolution in order to allow for a drastic reduction of animal testing and increased speed of diagnostic results. It will allow the study of dynamic processes in real-time and at multiple length scales, enabling researchers to observe how cells and tissues respond to viral infections or pathogen-induced inflammation, while also permitting a high-throughput enabled discovery of novel diagnostic biomarkers.

Overall, this technology represents a major breakthrough in capable laser technology for high accuracy and throughput medical diagnostics and is poised to make significant contributions to the European laser and biomedical technology landscape.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101135053
Start date: 01-12-2023
End date: 30-11-2026
Total budget - Public funding: - 4 823 332,00 Euro
Cordis data

Original description

Swept lasers have enabled paradigm-shifts in biomedical imaging and diagnostics. The SWEEPICS project will research and develop the next generation of swept source lasers with flexible pulse modulation capability, high power output, multi-wavelength coherent output and multi-application potential. SWEEPICS will develop new laser-based systems: a high-speed, high resolution multiphoton high content screening system, a multimodal non-invasive imaging system based on high-speed photoacoustics and multiphoton microscopy, and a smart microscope for accelerated acquisition&diagnostics. The inter-disciplinary consortium of European partners will showcase the SWEEPICS technology in cutting-edge use cases based on novel vascular organoids for animal-free drug-testing and infection studies.

This disruptive SWEEPICS technology will rapidly generate high-resolution diagnostic imaging in three-dimension, where the high imaging depth permits penetrating millimeter deep into tissue-like organoids and imaging at high temporal and spatial resolution in order to allow for a drastic reduction of animal testing and increased speed of diagnostic results. It will allow the study of dynamic processes in real-time and at multiple length scales, enabling researchers to observe how cells and tissues respond to viral infections or pathogen-induced inflammation, while also permitting a high-throughput enabled discovery of novel diagnostic biomarkers.

Overall, this technology represents a major breakthrough in capable laser technology for high accuracy and throughput medical diagnostics and is poised to make significant contributions to the European laser and biomedical technology landscape.

Status

SIGNED

Call topic

HORIZON-CL4-2023-DIGITAL-EMERGING-01-53

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Photonics Partnership
Photonics Partnership Call 2023
HORIZON-CL4-2023-DIGITAL-EMERGING-01-53 Versatile light sources and systems as tools for manufacturing and medical application (Photonics Partnership) (RIA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.0 Cross-cutting call topics
HORIZON-CL4-2023-DIGITAL-EMERGING-01
HORIZON-CL4-2023-DIGITAL-EMERGING-01-53 Versatile light sources and systems as tools for manufacturing and medical application (Photonics Partnership) (RIA)
HORIZON.2.4.2 Key Digital Technologies
HORIZON-CL4-2023-DIGITAL-EMERGING-01
HORIZON-CL4-2023-DIGITAL-EMERGING-01-53 Versatile light sources and systems as tools for manufacturing and medical application (Photonics Partnership) (RIA)