Summary
The ECO-eNET project will perform foundational research on emerging transmission technologies, to form a new confluent edge network that brings together optical and radio transport to scale to new levels of efficiency and capacity for 6G, by integrating confluent front-/mid-/back-haul (xhaul) with cell-free and distributed multiple-input multiple-output based access networks. The combination of photonic radio fixed wireless and free space optical transmission is used for fixed wireless connections, enabling the creation of an edge mesh network. New monitoring and slice-aware control protocols will unify the radio intelligent controllers with the transport software defined networking to efficiently deliver high-capacity flex grid wavelength multiplexed signals over standard single mode fibre and the fixed wireless links. Radio signals can be flexibly processed at different split phy points throughout the network or remain in analog radio over fibre format end-to-end.
The unique ECO-eNET combination of wired and wireless transport is further exploited for wireless control of the wired network segments, enhanced clock synchronization, and optical space and wavelength switching, groomed over FlexE ethernet. AI layer controls are added to orchestrate the federation of edge processing and splitting of AI models for optimum efficiency in executing user applications and smart network control functions. The ECO-eNET project brings together an interdisciplinary team of industry and academic partners to explore the full potential of these important emerging technologies to support the capacity, ultra-high energy efficiency, low latency, and robustness needed in 6G networks.
The unique ECO-eNET combination of wired and wireless transport is further exploited for wireless control of the wired network segments, enhanced clock synchronization, and optical space and wavelength switching, groomed over FlexE ethernet. AI layer controls are added to orchestrate the federation of edge processing and splitting of AI models for optimum efficiency in executing user applications and smart network control functions. The ECO-eNET project brings together an interdisciplinary team of industry and academic partners to explore the full potential of these important emerging technologies to support the capacity, ultra-high energy efficiency, low latency, and robustness needed in 6G networks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101139133 |
Start date: | 01-01-2024 |
End date: | 31-12-2026 |
Total budget - Public funding: | 3 769 981,00 Euro - 3 592 544,00 Euro |
Cordis data
Original description
The ECO-eNET project will perform foundational research on emerging transmission technologies, to form a new confluent edge network that brings together optical and radio transport to scale to new levels of efficiency and capacity for 6G, by integrating confluent front-/mid-/back-haul (xhaul) with cell-free and distributed multiple-input multiple-output based access networks. The combination of photonic radio fixed wireless and free space optical transmission is used for fixed wireless connections, enabling the creation of an edge mesh network. New monitoring and slice-aware control protocols will unify the radio intelligent controllers with the transport software defined networking to efficiently deliver high-capacity flex grid wavelength multiplexed signals over standard single mode fibre and the fixed wireless links. Radio signals can be flexibly processed at different split phy points throughout the network or remain in analog radio over fibre format end-to-end.The unique ECO-eNET combination of wired and wireless transport is further exploited for wireless control of the wired network segments, enhanced clock synchronization, and optical space and wavelength switching, groomed over FlexE ethernet. AI layer controls are added to orchestrate the federation of edge processing and splitting of AI models for optimum efficiency in executing user applications and smart network control functions. The ECO-eNET project brings together an interdisciplinary team of industry and academic partners to explore the full potential of these important emerging technologies to support the capacity, ultra-high energy efficiency, low latency, and robustness needed in 6G networks.
Status
SIGNEDCall topic
HORIZON-JU-SNS-2023-STREAM-B-01-03Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all