FERROMON | Ferrotransmons and Ferrogatemons for Scalable Superconducting Quantum Computers

Summary
We propose alternative approaches to superconducting qubit technology. State-of-the-art implementations require flux-bias lines to tune the qubit frequency. These lines are controlled with currents which can damage qubit performance by inducing undesirable magnetic fields. This is detrimental to qubit performance and presents a severe bottleneck for scalability, as these lines are associated with significant heat dissipation. In this project, we advance two novel superconducting qubit designs capable of overcoming this challenge by eliminating the need for flux lines. This will involve the investigation of SIsFS junctions and their integration into quantum processors. One innovation track will implement SIsFS junctions in a transmon geometry—ferrotransmons. The other will hybridize gatemons and π-junction to deliver a ferrogatemon. Three of Europe’s leading quantum startups will integrate these alternative qubit types into prototype full-stack systems to test the implications of these novel approaches on scalability and performance quality.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101115548
Start date: 01-11-2023
End date: 31-10-2025
Total budget - Public funding: 3 948 125,00 Euro - 3 948 125,00 Euro
Cordis data

Original description

We propose alternative approaches to superconducting qubit technology. State-of-the-art implementations require flux-bias lines to tune the qubit frequency. These lines are controlled with currents which can damage qubit performance by inducing undesirable magnetic fields. This is detrimental to qubit performance and presents a severe bottleneck for scalability, as these lines are associated with significant heat dissipation. In this project, we advance two novel superconducting qubit designs capable of overcoming this challenge by eliminating the need for flux lines. This will involve the investigation of SIsFS junctions and their integration into quantum processors. One innovation track will implement SIsFS junctions in a transmon geometry—ferrotransmons. The other will hybridize gatemons and π-junction to deliver a ferrogatemon. Three of Europe’s leading quantum startups will integrate these alternative qubit types into prototype full-stack systems to test the implications of these novel approaches on scalability and performance quality.

Status

SIGNED

Call topic

HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-06

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-06 EIC Pathfinder Challenge: Alternative approaches to Quantum Information Processing, Communication, and Sensing
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01
HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-06 EIC Pathfinder Challenge: Alternative approaches to Quantum Information Processing, Communication, and Sensing