SCALLOP | Scalable Hardware for Large-Scale Quantum Computing

Summary
Computing power is key to innovation, allowing us to process vast amounts of data and solve complex problems in fields such as finance, healthcare, science and engineering. However, traditional computing has limitations, and quantum computing offers a solution. Quantum computers excel at optimization tasks such as solving complex logistical problems; one day, they may be able to accurately model viruses and drugs, as well as come up with climate solutions. However, we currently face hardware and scalability limitations in creating large-scale and fault-tolerant quantum computers. To address this challenge, we have developed a new technology that integrates a cryo-CMOS multiplexer for precise control of high-quality silicon spin qubits, as well as commercial-ready nanometer-scale CMOS processes to create and accommodate millions of such qubits. Our technology operates at relatively high temperatures, resulting in a smaller carbon footprint and more compact form factor. This will make it a practical and energy efficient solution for easy and sustainable deployment. Our goal is to build a full-stack quantum computer demonstrator using SQT's breakthrough high quality Si spin qubit & cryo-CMOS multiplexer technology and QBX's extensive gate model quantum computing characterization & control experience. The final demonstrator system will be a significant step forward in the development scalable, fault-tolerant quantum computers that require millions of qubits.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101136793
Start date: 01-09-2023
End date: 28-02-2026
Total budget - Public funding: 2 499 998,75 Euro - 2 499 998,00 Euro
Cordis data

Original description

Computing power is key to innovation, allowing us to process vast amounts of data and solve complex problems in fields such as finance, healthcare, science and engineering. However, traditional computing has limitations, and quantum computing offers a solution. Quantum computers excel at optimization tasks such as solving complex logistical problems; one day, they may be able to accurately model viruses and drugs, as well as come up with climate solutions. However, we currently face hardware and scalability limitations in creating large-scale and fault-tolerant quantum computers. To address this challenge, we have developed a new technology that integrates a cryo-CMOS multiplexer for precise control of high-quality silicon spin qubits, as well as commercial-ready nanometer-scale CMOS processes to create and accommodate millions of such qubits. Our technology operates at relatively high temperatures, resulting in a smaller carbon footprint and more compact form factor. This will make it a practical and energy efficient solution for easy and sustainable deployment. Our goal is to build a full-stack quantum computer demonstrator using SQT's breakthrough high quality Si spin qubit & cryo-CMOS multiplexer technology and QBX's extensive gate model quantum computing characterization & control experience. The final demonstrator system will be a significant step forward in the development scalable, fault-tolerant quantum computers that require millions of qubits.

Status

SIGNED

Call topic

HORIZON-EIC-2023-TRANSITIONOPEN-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2023-TRANSITION-01
HORIZON-EIC-2023-TRANSITIONOPEN-01 Transition Open 2023