QUONDENSATE | QUantum reservoir cOmputing based on eNgineered DEfect NetworkS in trAnsition meTal dichalcogEnides

Summary
Today’s computation, based on parallel processing of information, is reaching its physical limitations and novel solutions are to be found in the close future to overcome such major hurdle. This project aims to achieve the first proof-of-concept of Quantum Reservoir Computing (QRC) scheme based on networks of Quantum Materials (QMs) defects which will enable the fabrication of prototypical computing devices. The engineering of defect network characteristics such as density and defect typology will allow tailoring the defects’ network physical properties, and ultimately its neuromorphic and computing complexity. The project is feasible yet groundbreaking because it capitalizes upon the very different expertises, both experimental and theoretical, comprised within the partners’ consortium, all of which are required to implement a novel QRC scheme. As such, this project will result in unprecedented characteristics that extend the conventional boundaries of ICT electronic devices and systems and pave the way for the development of novel Quantum Technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101130384
Start date: 01-04-2024
End date: 31-03-2028
Total budget - Public funding: 2 675 838,75 Euro - 2 675 838,00 Euro
Cordis data

Original description

Today’s computation, based on parallel processing of information, is reaching its physical limitations and novel solutions are to be found in the close future to overcome such major hurdle. This project aims to achieve the first proof-of-concept of Quantum Reservoir Computing (QRC) scheme based on networks of Quantum Materials (QMs) defects which will enable the fabrication of prototypical computing devices. The engineering of defect network characteristics such as density and defect typology will allow tailoring the defects’ network physical properties, and ultimately its neuromorphic and computing complexity. The project is feasible yet groundbreaking because it capitalizes upon the very different expertises, both experimental and theoretical, comprised within the partners’ consortium, all of which are required to implement a novel QRC scheme. As such, this project will result in unprecedented characteristics that extend the conventional boundaries of ICT electronic devices and systems and pave the way for the development of novel Quantum Technologies.

Status

SIGNED

Call topic

HORIZON-EIC-2023-PATHFINDEROPEN-01-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2023-PATHFINDEROPEN-01
HORIZON-EIC-2023-PATHFINDEROPEN-01-01 EIC Pathfinder Open