ADAPTATION | Adaptable bio-inspired polariton-polariton energy management

Summary
Humanity is approaching a cornerstone where Climate Change will transform society, industry and economy. Therefore, moving away from inefficient energy consumption and fossil fuels is more urgent than ever. Renewable energy sources are growing fast but their full integration will make necessary not just a boost of their efficiency but rather a quantum leap in energy management. Such paradigm change will come from technologies adaptable to changing climate conditions and, importantly, making use of widely available non-critical materials.

ADAPTATION vision is to challenge current paradigms in solar energy harvesting and their integration by developing a new solar material platform that will integrate thermal management and energy collection in a single material, reducing electricity peak profile and allowing easy adaptation of the energy harvesting properties to different climate conditions. For this purpose, we will take inspiration from the two most efficient energy management processes on Earth: photosynthesis and terrestrial radiative cooling.

ADAPTATION will mimic simultaneously the strategies followed by plants during photosynthesis to collect and manage energy at the nanoscale and the power-free radiative cooling of Earth by thermal regulation at the microscale. These extraordinary energy collection and managing strategies are robust to disorder and provide self-regulatory cooling capacities which make them ideal to be integrated into a wide spectrum of physical objects, powering them with a sustainable energy source. In ADAPTATION we will develop the building blocks for this technology and will demonstrate its implementation with two sustainable novel device architectures.

Our innovative vision is based on the multidisciplinary background of its consortium with experts in geosciences, polaritonic photonics, colloidal and supramolecular chemistry, materials engineering, quantum technologies or photovoltaics including high-tech industrial implementation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101129661
Start date: 01-04-2024
End date: 31-03-2028
Total budget - Public funding: 3 635 137,50 Euro - 3 635 137,00 Euro
Cordis data

Original description

Humanity is approaching a cornerstone where Climate Change will transform society, industry and economy. Therefore, moving away from inefficient energy consumption and fossil fuels is more urgent than ever. Renewable energy sources are growing fast but their full integration will make necessary not just a boost of their efficiency but rather a quantum leap in energy management. Such paradigm change will come from technologies adaptable to changing climate conditions and, importantly, making use of widely available non-critical materials.

ADAPTATION vision is to challenge current paradigms in solar energy harvesting and their integration by developing a new solar material platform that will integrate thermal management and energy collection in a single material, reducing electricity peak profile and allowing easy adaptation of the energy harvesting properties to different climate conditions. For this purpose, we will take inspiration from the two most efficient energy management processes on Earth: photosynthesis and terrestrial radiative cooling.

ADAPTATION will mimic simultaneously the strategies followed by plants during photosynthesis to collect and manage energy at the nanoscale and the power-free radiative cooling of Earth by thermal regulation at the microscale. These extraordinary energy collection and managing strategies are robust to disorder and provide self-regulatory cooling capacities which make them ideal to be integrated into a wide spectrum of physical objects, powering them with a sustainable energy source. In ADAPTATION we will develop the building blocks for this technology and will demonstrate its implementation with two sustainable novel device architectures.

Our innovative vision is based on the multidisciplinary background of its consortium with experts in geosciences, polaritonic photonics, colloidal and supramolecular chemistry, materials engineering, quantum technologies or photovoltaics including high-tech industrial implementation.

Status

SIGNED

Call topic

HORIZON-EIC-2023-PATHFINDEROPEN-01-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.0 Cross-cutting call topics
HORIZON-EIC-2023-PATHFINDEROPEN-01
HORIZON-EIC-2023-PATHFINDEROPEN-01-01 EIC Pathfinder Open