Lithium-Ion Battery | Lithium - Ion Batteries: a microscopic view!

Summary
Lithium-ion batteries (LIBs) play an important role in our daily life with a variety of applicants. To this day, significant resources have been dedicated to the development of high-performance LIBs, particularly the research necessary to identify the optimum electrolyte materials to solve the safety issue. Up to this point polymer electrolytes are widely investigated for their potential to improve batteries’ safety. Given the relative high ionic conductivity, λ, around 10-3 S/cm, poly-ethylene oxide (PEO) is frequently utilized as the polymer matrix in this scenario. But compared to the commercial liquid electrolyte, the ionic conductivity of polymer electrolyte needs to be improved for at least ten times. It is widely acknowledged that the transportation of Li+ is directly related to the segmental and backbone motions of the polymer indicating to improve the ionic conductivity by structure optimization of polymer. Instead of using the traditional trial and error method, modern innovative studies intend to develop a microscopic picture of the Li–ion transportation process to instruct the polymer optimization but it is difficult with in-house laboratory methods. This project aims at designing a polymer with high ionic conductivity. To achieve this goal, the microscopic view of Li+ transportation in polymer will be elucidated through molecular dynamics (MD) simulation and the polymer dynamics will be clarified with MD simulation and Quasi-elastic Neutron Scattering (QENS).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101111302
Start date: 01-01-2024
End date: 31-12-2025
Total budget - Public funding: - 189 687,00 Euro
Cordis data

Original description

Lithium-ion batteries (LIBs) play an important role in our daily life with a variety of applicants. To this day, significant resources have been dedicated to the development of high-performance LIBs, particularly the research necessary to identify the optimum electrolyte materials to solve the safety issue. Up to this point polymer electrolytes are widely investigated for their potential to improve batteries’ safety. Given the relative high ionic conductivity, λ, around 10-3 S/cm, poly-ethylene oxide (PEO) is frequently utilized as the polymer matrix in this scenario. But compared to the commercial liquid electrolyte, the ionic conductivity of polymer electrolyte needs to be improved for at least ten times. It is widely acknowledged that the transportation of Li+ is directly related to the segmental and backbone motions of the polymer indicating to improve the ionic conductivity by structure optimization of polymer. Instead of using the traditional trial and error method, modern innovative studies intend to develop a microscopic picture of the Li–ion transportation process to instruct the polymer optimization but it is difficult with in-house laboratory methods. This project aims at designing a polymer with high ionic conductivity. To achieve this goal, the microscopic view of Li+ transportation in polymer will be elucidated through molecular dynamics (MD) simulation and the polymer dynamics will be clarified with MD simulation and Quasi-elastic Neutron Scattering (QENS).

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022