MICRO-INSERT | Microbially Induced Mineralisation of Wood for Improved Fire Resistance

Summary
Wood is the only renewable construction material and holds great promise for sustainable built environments of the future. However, its combustibility is a major limitation. The drawback of using traditional fire and flame retardants is the toxicity and volatility of some of their components and the loss of chemicals by leaching, leading to poorer performance. Mineralisation of wood offers a green alternative, but current strategies often require a costly technical setup for supercritical gases or the use of harmful chemicals to achieve the deposition of minerals deep inside the wood structure. Biologically induced mineralisation is a widespread phenomenon occurring in all kingdoms of life. In recent years, microbially induced calcium carbonate (CaCO3) precipitation has been proposed as a potential solution to address many environmental and engineering issues related to the enhancement of inorganic materials (protection of concrete, soil consolidation). However, the potential for using fungi has received relatively little attention compared to bacteria. The MICRO-INSERT project will investigate the feasibility of using fungi as CaCO3 carriers to develop a novel bioinspired mineralisation process for biobased building materials. Wood as a highly porous, three-dimensional organic scaffold will be mineralised to create hierarchically structured organic-inorganic hybrid materials with novel properties, including improved fire resistance. The proposed bioinspired treatment incorporates ideas for sustainable materials design, circularity, reduction of toxicity, and lowering the negative impact on the environment. The MICRO-INSERT project will stimulate innovation and knowledge transfer between the host and ER by building a solid research network, organising events, mentoring young researchers, and managing projects. The ER will gain research and scientific skills and acquire a new set of competencies to reach professional maturity and independence after the fellowship.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101105772
Start date: 01-09-2024
End date: 31-08-2026
Total budget - Public funding: - 171 399,00 Euro
Cordis data

Original description

Wood is the only renewable construction material and holds great promise for sustainable built environments of the future. However, its combustibility is a major limitation. The drawback of using traditional fire and flame retardants is the toxicity and volatility of some of their components and the loss of chemicals by leaching, leading to poorer performance. Mineralisation of wood offers a green alternative, but current strategies often require a costly technical setup for supercritical gases or the use of harmful chemicals to achieve the deposition of minerals deep inside the wood structure. Biologically induced mineralisation is a widespread phenomenon occurring in all kingdoms of life. In recent years, microbially induced calcium carbonate (CaCO3) precipitation has been proposed as a potential solution to address many environmental and engineering issues related to the enhancement of inorganic materials (protection of concrete, soil consolidation). However, the potential for using fungi has received relatively little attention compared to bacteria. The MICRO-INSERT project will investigate the feasibility of using fungi as CaCO3 carriers to develop a novel bioinspired mineralisation process for biobased building materials. Wood as a highly porous, three-dimensional organic scaffold will be mineralised to create hierarchically structured organic-inorganic hybrid materials with novel properties, including improved fire resistance. The proposed bioinspired treatment incorporates ideas for sustainable materials design, circularity, reduction of toxicity, and lowering the negative impact on the environment. The MICRO-INSERT project will stimulate innovation and knowledge transfer between the host and ER by building a solid research network, organising events, mentoring young researchers, and managing projects. The ER will gain research and scientific skills and acquire a new set of competencies to reach professional maturity and independence after the fellowship.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)