PorMatDesign | Machine learning-aided multiscale design of porous materials tailored to application-specific, hydro-mechanical performance requirements

Summary
Through continuous interaction between computational fluid dynamics, mechanics of solids, material engineering, and machine learning, with my host, I will develop a novel and computationally efficient method, implemented in open-source software, for the multi-scale design of engineered porous materials (EPMs) that meet user-specified hydro-mechanical functional requirements. This computer-aided approach will accelerate the discovery of EPMs and shorten the time for technology development, and is aimed at EPM design for additive Manufacturing (i.e. 3D-printing). The basic notion of the proposed approach is: (1) to employ a dimensionality reduction techniques to obtain a low-dimensional proxy for the high-dimensional problem of characterizing a porous micro-structure, (2) to develop physics-informed neural networks (PINNs) for scale-specific hydro-mechanical simulation of porous media at the micro (pore) scale, the meso (pore-network) scale, and the macro (Darcy) scale, (3) to employ a physics-based coupling mechanism for scale-specific PINNs, allowing them to form a chain of neural networks for hydro-mechanical structure-property-performance (S-P-P) linkage, and (4) to incorporate a topology optimization algorithm for the multi-scale design of porous media. The focus is on fluid-saturated, poroelastic materials, with special emphasis on biomedical applications that require a defined porous structure, such as meniscus implants and bone scaffolds. I will work on the project at the University of Luxembourg (host institute), in collaboration with the University of Strasbourg (secondment institute).
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101109907
Start date: 01-10-2023
End date: 30-09-2025
Total budget - Public funding: - 191 760,00 Euro
Cordis data

Original description

Through continuous interaction between computational fluid dynamics, mechanics of solids, material engineering, and machine learning, with my host, I will develop a novel and computationally efficient method, implemented in open-source software, for the multi-scale design of engineered porous materials (EPMs) that meet user-specified hydro-mechanical functional requirements. This computer-aided approach will accelerate the discovery of EPMs and shorten the time for technology development, and is aimed at EPM design for additive Manufacturing (i.e. 3D-printing). The basic notion of the proposed approach is: (1) to employ a dimensionality reduction techniques to obtain a low-dimensional proxy for the high-dimensional problem of characterizing a porous micro-structure, (2) to develop physics-informed neural networks (PINNs) for scale-specific hydro-mechanical simulation of porous media at the micro (pore) scale, the meso (pore-network) scale, and the macro (Darcy) scale, (3) to employ a physics-based coupling mechanism for scale-specific PINNs, allowing them to form a chain of neural networks for hydro-mechanical structure-property-performance (S-P-P) linkage, and (4) to incorporate a topology optimization algorithm for the multi-scale design of porous media. The focus is on fluid-saturated, poroelastic materials, with special emphasis on biomedical applications that require a defined porous structure, such as meniscus implants and bone scaffolds. I will work on the project at the University of Luxembourg (host institute), in collaboration with the University of Strasbourg (secondment institute).

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

12-03-2024
Images
No images available.
Geographical location(s)