Summary
Atom-photon interactions are one of the most studied interactions in physics. These interactions are critical to the realization of several quantum technologies and the investigation of fundamental phenomena in many-body quantum physics. Yet controlling them at the quantum level in an efficient way is still one of the central challenges in contemporary physics. Subwavelength atomic arrays are emerging as a novel paradigm to realize efficient atoms-photons interactions. They are periodic arrangements of atoms with an interatomic separation smaller than their dipole transition wavelength. Atomic arrays harness dissipation as a resource, improving the control of atom-photon interactions over standard light-matter interfaces. However, most of the current theoretical and experimental effort has been devoted to the single excitation response of atomic arrays, thus neglecting the role of quantum correlations. Exploring these effects is timely as several experiments with subwavelength arrays can access this uncharted domain. This project aims at investigating the correlated many-body dynamics of subwavelength arrays and at studying their potential application in quantum technologies. Combining the fellow expertise in optomechanics, the US Host's deep knowledge of subwavelength arrays and open systems, and the EU Host's mastery of numerical methods for many-body physics, the goal of this research proposal is to establish subwavelength atomic arrays as efficient atom-photon interfaces and carefully model their experimental realization with atoms in optical lattices.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101105916 |
Start date: | 01-04-2024 |
End date: | 31-03-2027 |
Total budget - Public funding: | - 261 380,00 Euro |
Cordis data
Original description
Atom-photon interactions are one of the most studied interactions in physics. These interactions are critical to the realization of several quantum technologies and the investigation of fundamental phenomena in many-body quantum physics. Yet controlling them at the quantum level in an efficient way is still one of the central challenges in contemporary physics. Subwavelength atomic arrays are emerging as a novel paradigm to realize efficient atoms-photons interactions. They are periodic arrangements of atoms with an interatomic separation smaller than their dipole transition wavelength. Atomic arrays harness dissipation as a resource, improving the control of atom-photon interactions over standard light-matter interfaces. However, most of the current theoretical and experimental effort has been devoted to the single excitation response of atomic arrays, thus neglecting the role of quantum correlations. Exploring these effects is timely as several experiments with subwavelength arrays can access this uncharted domain. This project aims at investigating the correlated many-body dynamics of subwavelength arrays and at studying their potential application in quantum technologies. Combining the fellow expertise in optomechanics, the US Host's deep knowledge of subwavelength arrays and open systems, and the EU Host's mastery of numerical methods for many-body physics, the goal of this research proposal is to establish subwavelength atomic arrays as efficient atom-photon interfaces and carefully model their experimental realization with atoms in optical lattices.Status
SIGNEDCall topic
HORIZON-MSCA-2022-PF-01-01Update Date
12-03-2024
Images
No images available.
Geographical location(s)