Summary
Roughly 40% of the current global energy demand is consumed in commercial and residential buildings. Thanks to advances in technology, Building Integrated PhotoVoltaics (BIPV) have emerged, enabling all buildings to become electricity producers and strive towards self-sustainability.
Due to stringent energy efficiency norms in the EU, demand for BIPV products is soaring: PV incorporated in shells of multi-story buildings is required for supplying these high rise structures with energy. But also other artificial structures, e.g. sound barriers along highways, shall be used for energy provision, without further impact on the environment. Yet, truly integrated and aesthetic BIPV modules are currently neither available in commercial volumes nor at sustainable costs. Prices of products with still limited adaptability hinder the actual market growth.
crystalsol addresses these shortcomings with a patented and entirely new type of cost-efficient, flexible and transparent PV technology where advantages of an efficient and stable monocrystalline absorber and low cost roll-to-roll (R2R) module production are combined. Due to the reason that crystalsol is able to produce semi-finished modules that allow full integration into building elements without any expensive and complex integration steps, BIPV products can pricewise finally compete with standard building shell elements (like facades without PV). This offers a huge competitive advantage, resulting in an enormous potential in the BIPV market.
This Feasibility Study (cs-BIPV-FS) will bring crystalsol closer to the market entry stage. It will be a first step towards full commercialisation before upscaling the company’s operations and production processes. The cs-BIPV-FS project will help to analyse and conclude the technical feasibility and commercial potential of the ground-breaking BIPV technology, resulting in advancing the innovative technological concept into a credible business case.
Due to stringent energy efficiency norms in the EU, demand for BIPV products is soaring: PV incorporated in shells of multi-story buildings is required for supplying these high rise structures with energy. But also other artificial structures, e.g. sound barriers along highways, shall be used for energy provision, without further impact on the environment. Yet, truly integrated and aesthetic BIPV modules are currently neither available in commercial volumes nor at sustainable costs. Prices of products with still limited adaptability hinder the actual market growth.
crystalsol addresses these shortcomings with a patented and entirely new type of cost-efficient, flexible and transparent PV technology where advantages of an efficient and stable monocrystalline absorber and low cost roll-to-roll (R2R) module production are combined. Due to the reason that crystalsol is able to produce semi-finished modules that allow full integration into building elements without any expensive and complex integration steps, BIPV products can pricewise finally compete with standard building shell elements (like facades without PV). This offers a huge competitive advantage, resulting in an enormous potential in the BIPV market.
This Feasibility Study (cs-BIPV-FS) will bring crystalsol closer to the market entry stage. It will be a first step towards full commercialisation before upscaling the company’s operations and production processes. The cs-BIPV-FS project will help to analyse and conclude the technical feasibility and commercial potential of the ground-breaking BIPV technology, resulting in advancing the innovative technological concept into a credible business case.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/887915 |
Start date: | 01-11-2019 |
End date: | 31-01-2020 |
Total budget - Public funding: | 71 429,00 Euro - 50 000,00 Euro |
Cordis data
Original description
Roughly 40% of the current global energy demand is consumed in commercial and residential buildings. Thanks to advances in technology, Building Integrated PhotoVoltaics (BIPV) have emerged, enabling all buildings to become electricity producers and strive towards self-sustainability.Due to stringent energy efficiency norms in the EU, demand for BIPV products is soaring: PV incorporated in shells of multi-story buildings is required for supplying these high rise structures with energy. But also other artificial structures, e.g. sound barriers along highways, shall be used for energy provision, without further impact on the environment. Yet, truly integrated and aesthetic BIPV modules are currently neither available in commercial volumes nor at sustainable costs. Prices of products with still limited adaptability hinder the actual market growth.
crystalsol addresses these shortcomings with a patented and entirely new type of cost-efficient, flexible and transparent PV technology where advantages of an efficient and stable monocrystalline absorber and low cost roll-to-roll (R2R) module production are combined. Due to the reason that crystalsol is able to produce semi-finished modules that allow full integration into building elements without any expensive and complex integration steps, BIPV products can pricewise finally compete with standard building shell elements (like facades without PV). This offers a huge competitive advantage, resulting in an enormous potential in the BIPV market.
This Feasibility Study (cs-BIPV-FS) will bring crystalsol closer to the market entry stage. It will be a first step towards full commercialisation before upscaling the company’s operations and production processes. The cs-BIPV-FS project will help to analyse and conclude the technical feasibility and commercial potential of the ground-breaking BIPV technology, resulting in advancing the innovative technological concept into a credible business case.
Status
CLOSEDCall topic
EIC-SMEInst-2018-2020Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all