NalpACT | Exploring inflammasome activation and targeted inhibition

Summary
Inflammasomes are cytosolic multi-protein complexes that form in response to a wide range of pathogens, tissue damage, and other harmful stimuli. Members of the family of NOD-like receptors (NLRs) sense these pathogen and danger associated molecular patterns, triggering innate immune responses. NLRP3 is a well-studied NLR whose activation by a broad spectrum of stimuli leads to inflammasome formation and pyroptosis. Yet, the mechanisms inducing NLRP3 activation and the way how antagonistic small molecules counteract its function remain poorly understood. Just recently, we have determined the cryo-electron microscopy structures of full-length human NLRP3 in its inactive form and bound to the inhibitor CRID3. Native NLRP3 is a decamer composed of homodimers of intertwined LRR domains that assemble back-to-back as pentamers. We made the surprising finding that the effector pyrin domain is shielded inside the decamer cage providing a safeguard mechanism against accidental activation. To obtain insights into the activation mechanism of NLRP3 and the molecular formation of the inflammasome, I here propose a challenging and pioneering endeavour: employing biochemical, biophysical and structural analyses, we will resolve the structure of activated NLRP3 associated to lipid membranes, unravel its regulation by post-translational modifications, design specific inhibitors for the targeted protein degradation, and explore filamentous seeds for the maturation of Caspase-1 and Alzheimer’s disease forming amyloid-beta fibrils. Further, transferring our knowledge of CRID3-mediated NLRP3 inhibition to other NLRs as NLRP12 and NLRP1 will shed light on their mechanism of action and open new avenues for directed targeting. Collectively, this work will uncover fundamental molecular principles of inflammasome activation and the mode of action of anti-inflammatory drugs. I foresee, that these insights will open a wide field for the development of NLR-specific inhibitors as new medicines.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101098206
Start date: 01-01-2024
End date: 31-12-2028
Total budget - Public funding: 2 155 047,00 Euro - 2 155 047,00 Euro
Cordis data

Original description

Inflammasomes are cytosolic multi-protein complexes that form in response to a wide range of pathogens, tissue damage, and other harmful stimuli. Members of the family of NOD-like receptors (NLRs) sense these pathogen and danger associated molecular patterns, triggering innate immune responses. NLRP3 is a well-studied NLR whose activation by a broad spectrum of stimuli leads to inflammasome formation and pyroptosis. Yet, the mechanisms inducing NLRP3 activation and the way how antagonistic small molecules counteract its function remain poorly understood. Just recently, we have determined the cryo-electron microscopy structures of full-length human NLRP3 in its inactive form and bound to the inhibitor CRID3. Native NLRP3 is a decamer composed of homodimers of intertwined LRR domains that assemble back-to-back as pentamers. We made the surprising finding that the effector pyrin domain is shielded inside the decamer cage providing a safeguard mechanism against accidental activation. To obtain insights into the activation mechanism of NLRP3 and the molecular formation of the inflammasome, I here propose a challenging and pioneering endeavour: employing biochemical, biophysical and structural analyses, we will resolve the structure of activated NLRP3 associated to lipid membranes, unravel its regulation by post-translational modifications, design specific inhibitors for the targeted protein degradation, and explore filamentous seeds for the maturation of Caspase-1 and Alzheimer’s disease forming amyloid-beta fibrils. Further, transferring our knowledge of CRID3-mediated NLRP3 inhibition to other NLRs as NLRP12 and NLRP1 will shed light on their mechanism of action and open new avenues for directed targeting. Collectively, this work will uncover fundamental molecular principles of inflammasome activation and the mode of action of anti-inflammatory drugs. I foresee, that these insights will open a wide field for the development of NLR-specific inhibitors as new medicines.

Status

SIGNED

Call topic

ERC-2022-ADG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-ADG
HORIZON.1.1.1 Frontier science
ERC-2022-ADG