RobustNanoNet | Understanding and Engineering Resistive Switching towards Robust Neuromorphic Systems

Summary
Resistive switching refers to the controlled change in resistance of an electronic material, e.g. metal oxide, via the creation and modulation of nanoscale filaments. Although its physics is not yet fully understood, resistive switching devices (called memristors) are promising as efficient artificial synapses in neuro-inspired computing systems. However practical challenges exist. Current devices excel in only a few of the performance metrics necessary for circuit and system integration. Moreover, they exhibit non-idealities causing neuromorphic systems using these devices to have low performance. The project will address this key issue by pursuing device-system co-optimization across four objectives, aiming to engineer a single “hero” resistive switching technology with all the desired metrics. Aim 1 will develop resistive switching devices based on a new class of materials with broad compositional space, called high entropy oxides. Promising compositions will be fabricated in a high throughput fashion. In Aim 2, a proposed characterization method via a state-of-the-art mid-infrared laser will help understand in-operando the filamentary switching at nanoscale and uncover the physical mechanisms behind its non-idealities. The fabrication and characterization will iteratively target a broad range of performance metrics. Some metrics can only be quantified across a population of devices, so Aim 3 will integrate the optimized devices on transistor circuitry for benchmarking at scale. Aim 4 targets the applicability of these devices to next generation neuromorphic systems for machine learning training. Preliminary work on a multi-layer neural network validated this concept and indicated the need for co-optimization, as proposed. RobustNanoNet will address the interdisciplinary challenges towards a reliable resistive switching technology to support robust neuromorphic systems for energy efficient computing.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101078843
Start date: 01-09-2024
End date: 31-08-2029
Total budget - Public funding: 2 446 250,00 Euro - 2 446 250,00 Euro
Cordis data

Original description

Resistive switching refers to the controlled change in resistance of an electronic material, e.g. metal oxide, via the creation and modulation of nanoscale filaments. Although its physics is not yet fully understood, resistive switching devices (called memristors) are promising as efficient artificial synapses in neuro-inspired computing systems. However practical challenges exist. Current devices excel in only a few of the performance metrics necessary for circuit and system integration. Moreover, they exhibit non-idealities causing neuromorphic systems using these devices to have low performance. The project will address this key issue by pursuing device-system co-optimization across four objectives, aiming to engineer a single “hero” resistive switching technology with all the desired metrics. Aim 1 will develop resistive switching devices based on a new class of materials with broad compositional space, called high entropy oxides. Promising compositions will be fabricated in a high throughput fashion. In Aim 2, a proposed characterization method via a state-of-the-art mid-infrared laser will help understand in-operando the filamentary switching at nanoscale and uncover the physical mechanisms behind its non-idealities. The fabrication and characterization will iteratively target a broad range of performance metrics. Some metrics can only be quantified across a population of devices, so Aim 3 will integrate the optimized devices on transistor circuitry for benchmarking at scale. Aim 4 targets the applicability of these devices to next generation neuromorphic systems for machine learning training. Preliminary work on a multi-layer neural network validated this concept and indicated the need for co-optimization, as proposed. RobustNanoNet will address the interdisciplinary challenges towards a reliable resistive switching technology to support robust neuromorphic systems for energy efficient computing.

Status

SIGNED

Call topic

ERC-2022-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-STG ERC STARTING GRANTS