T-SPINDEX | Low-noise, rapid and ultrabroadband terahertz time-domain ellipsometry enabled by spintronic terahertz emitters

Summary
Electromagnetic radiation in the terahertz (THz) frequency range (0.3-30 THz) is a powerful tool for material spectroscopy and characterization in a contact-free, non-ionizing and non-destructive way. An essential application is the contact-free measurement of the complex-valued reflectivity and, ideally, refractive index of materials. Such knowledge is essential in condensed-matter research (for characterization of, e.g., the conduction-electron concentration and scattering in semiconductors, of optical phonons in insulators and magnons in antiferromagnets) and in applied settings. Ideally, THz reflectivity measurements should be (1) ultrabroadband (covering two decades from 0.3 to 30 THz), (2) user-friendly and offer (3) high precision and low noise. However, requirements (1)-(3) are not fulfilled by current approaches. The goal of T-SPINDEX is to build a prototype THz time-domain reflectivity spectrometer to determine the THz refractive index of materials rapidly. Features (1)-(3) are achieved altogether by using an innovative laser-driven coherent THz source, a spintronic THz emitter.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101123255
Start date: 01-07-2024
End date: 31-12-2025
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Electromagnetic radiation in the terahertz (THz) frequency range (0.3-30 THz) is a powerful tool for material spectroscopy and characterization in a contact-free, non-ionizing and non-destructive way. An essential application is the contact-free measurement of the complex-valued reflectivity and, ideally, refractive index of materials. Such knowledge is essential in condensed-matter research (for characterization of, e.g., the conduction-electron concentration and scattering in semiconductors, of optical phonons in insulators and magnons in antiferromagnets) and in applied settings. Ideally, THz reflectivity measurements should be (1) ultrabroadband (covering two decades from 0.3 to 30 THz), (2) user-friendly and offer (3) high precision and low noise. However, requirements (1)-(3) are not fulfilled by current approaches. The goal of T-SPINDEX is to build a prototype THz time-domain reflectivity spectrometer to determine the THz refractive index of materials rapidly. Features (1)-(3) are achieved altogether by using an innovative laser-driven coherent THz source, a spintronic THz emitter.

Status

SIGNED

Call topic

ERC-2023-POC

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-POC ERC PROOF OF CONCEPT GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-POC ERC PROOF OF CONCEPT GRANTS