AnSur | Geometric Analysis and Surface Groups

Summary
We propose to study links between curves in flag manifolds, surfaces solutions of geometric partial differential equations in some affine symmetric spaces, and functions on the moduli space of curves. We will consider the relevant energy functions on the moduli spaces of those curves, or on the moduli space of Anosov representations for periodic data, in particular in the context of positivity. Amongst our concrete ambitious goals are: obtain topological invariant through quantising Anosov deformation spaces, define and compute volumes of Anosov deformation spaces and prove recursion formulae for them, find surfaces in symmetric spaces associated to opers and the relevant higher-rank Liouville action, solve special cases of the Auslander conjecture using foliated spaces.

More specifically, the backbone of this project is to explore a general class of functions on moduli spaces of Anosov representations and, beyond, of uniformly hyperbolic bundles. Then, we propose to identify the family of curves that will be possible asymptotic boundaries -- in the spirit of quasisymmetric curves in the sphere -- the periodic ones corresponding to Anosov representations. We will prove the existence and uniqueness of surfaces bounded at infinity by these curves. Going back, we will consider the area of such a surface, both at critical points on the moduli space, and as a renormalising function allowing to consider volumes of these moduli spaces. Finally, we will consider the space foliated by surfaces solutions of the asymptotic datum, and define entropy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101095722
Start date: 01-01-2024
End date: 31-12-2028
Total budget - Public funding: 2 325 043,00 Euro - 2 325 043,00 Euro
Cordis data

Original description

We propose to study links between curves in flag manifolds, surfaces solutions of geometric partial differential equations in some affine symmetric spaces, and functions on the moduli space of curves. We will consider the relevant energy functions on the moduli spaces of those curves, or on the moduli space of Anosov representations for periodic data, in particular in the context of positivity. Amongst our concrete ambitious goals are: obtain topological invariant through quantising Anosov deformation spaces, define and compute volumes of Anosov deformation spaces and prove recursion formulae for them, find surfaces in symmetric spaces associated to opers and the relevant higher-rank Liouville action, solve special cases of the Auslander conjecture using foliated spaces.

More specifically, the backbone of this project is to explore a general class of functions on moduli spaces of Anosov representations and, beyond, of uniformly hyperbolic bundles. Then, we propose to identify the family of curves that will be possible asymptotic boundaries -- in the spirit of quasisymmetric curves in the sphere -- the periodic ones corresponding to Anosov representations. We will prove the existence and uniqueness of surfaces bounded at infinity by these curves. Going back, we will consider the area of such a surface, both at critical points on the moduli space, and as a renormalising function allowing to consider volumes of these moduli spaces. Finally, we will consider the space foliated by surfaces solutions of the asymptotic datum, and define entropy.

Status

SIGNED

Call topic

ERC-2022-ADG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-ADG
HORIZON.1.1.1 Frontier science
ERC-2022-ADG