AQplus4 | Deep Learning Air Quality Forecasts for Four Days

Summary
AQplus4 will develop the first scientifically sound operational air quality forecasting system based on innovative deep learning and IT technology. Based on the successful development of AI air quality forecasting models in the IntelliAQ advanced grant, we will explore the combination of several deep learning models into one coherent concept, test the transferability to new air pollutant species and other world regions. Furthermore, the grant shall cover the necessary technical developments to prepare the data processing and deep learning software for operational use and we shall set-up a dialogue with two identified stakeholders (UBA Germany and NIER Korea) to discuss the data processing and forecasting requirements as well as the deployment and maintenance options. The stakeholder exchange will also include training activities including extended training of a Korean researcher. Timely and reliable air quality forecasts are important to issue health warnings and prepare mitigation measures. IntelliAQ has demonstrated higher accuracy forecasts compared to conventional chemistry transport model results. The AQplus4 system will therefore constitute an important breakthrough innovation that may later be adopted at several environmental monitoring agencies around the world.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101113400
Start date: 01-11-2023
End date: 30-04-2025
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

AQplus4 will develop the first scientifically sound operational air quality forecasting system based on innovative deep learning and IT technology. Based on the successful development of AI air quality forecasting models in the IntelliAQ advanced grant, we will explore the combination of several deep learning models into one coherent concept, test the transferability to new air pollutant species and other world regions. Furthermore, the grant shall cover the necessary technical developments to prepare the data processing and deep learning software for operational use and we shall set-up a dialogue with two identified stakeholders (UBA Germany and NIER Korea) to discuss the data processing and forecasting requirements as well as the deployment and maintenance options. The stakeholder exchange will also include training activities including extended training of a Korean researcher. Timely and reliable air quality forecasts are important to issue health warnings and prepare mitigation measures. IntelliAQ has demonstrated higher accuracy forecasts compared to conventional chemistry transport model results. The AQplus4 system will therefore constitute an important breakthrough innovation that may later be adopted at several environmental monitoring agencies around the world.

Status

SIGNED

Call topic

ERC-2022-POC2

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2
HORIZON.1.1.1 Frontier science
ERC-2022-POC2 ERC PROOF OF CONCEPT GRANTS2