MOORELIGHT | Next-Generation Light Source: Driving plasmas to power tomorrow’s nanolithography

Summary
Advanced semiconductor devices are produced using extreme ultraviolet (EUV) light at just 13.5nm wavelength. This small wavelength enables patterning the smallest and smartest features on chips. The recent revolutionary introduction of EUV lithography (EUVL) was the culmination of several decades of collaborative work between industry and science – a Project Apollo of the digital age. EUVL is powered by light that is produced in the interaction of high-energy CO2-gas laser pulses with molten tin microdroplets. The use of such lasers however leads to unsustainably low overall efficiency in converting electrical power to useful EUV light: delivering a watt of EUV power at the silicon wafer level currently has a megawatt footprint. Replacing gas lasers with much more efficient solid-state lasers will significantly reduce this footprint. It is currently however unclear what laser wavelength, and what plasma ‘recipe’ should be used. This is because we lack understanding of the underlying complex physics.

MOORELIGHT will deliver the missing insight that is required to efficiently and reliably power next-generation solid-state-laser-driven EUV light sources. (1) We will obtain understanding of phase changes and fragmentation of laser-impacted liquid thin tin targets and develop capabilities for laser-tailoring targets. (2) We will use tailored targets to investigate how these couple to laser light of variable wavelength and spatiotemporal profile to produce hot-and-dense plasma. This will provide insight through experiments and modeling into the optimum plasma recipe for producing EUV light, in tandem with efforts (3) to advance predictive plasma modeling by finding the elusive, atomic origins of the EUV light. Individually, these objectives will significantly impact their related fields of science and technology. Combined, they will enable to sustainably power tomorrow’s EUVL, and help realize the EU’s ambitions regarding its technological leadership in nanotechnology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101086839
Start date: 01-02-2024
End date: 31-01-2029
Total budget - Public funding: 2 000 000,00 Euro - 2 000 000,00 Euro
Cordis data

Original description

Advanced semiconductor devices are produced using extreme ultraviolet (EUV) light at just 13.5nm wavelength. This small wavelength enables patterning the smallest and smartest features on chips. The recent revolutionary introduction of EUV lithography (EUVL) was the culmination of several decades of collaborative work between industry and science – a Project Apollo of the digital age. EUVL is powered by light that is produced in the interaction of high-energy CO2-gas laser pulses with molten tin microdroplets. The use of such lasers however leads to unsustainably low overall efficiency in converting electrical power to useful EUV light: delivering a watt of EUV power at the silicon wafer level currently has a megawatt footprint. Replacing gas lasers with much more efficient solid-state lasers will significantly reduce this footprint. It is currently however unclear what laser wavelength, and what plasma ‘recipe’ should be used. This is because we lack understanding of the underlying complex physics.

MOORELIGHT will deliver the missing insight that is required to efficiently and reliably power next-generation solid-state-laser-driven EUV light sources. (1) We will obtain understanding of phase changes and fragmentation of laser-impacted liquid thin tin targets and develop capabilities for laser-tailoring targets. (2) We will use tailored targets to investigate how these couple to laser light of variable wavelength and spatiotemporal profile to produce hot-and-dense plasma. This will provide insight through experiments and modeling into the optimum plasma recipe for producing EUV light, in tandem with efforts (3) to advance predictive plasma modeling by finding the elusive, atomic origins of the EUV light. Individually, these objectives will significantly impact their related fields of science and technology. Combined, they will enable to sustainably power tomorrow’s EUVL, and help realize the EU’s ambitions regarding its technological leadership in nanotechnology.

Status

SIGNED

Call topic

ERC-2022-COG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-COG ERC CONSOLIDATOR GRANTS