Summary
Rotation sensors, also called gyroscopes, are ubiquitous in consumer electronics, navigation, and environmental sensing. The most advanced gyroscopes are ring lasers that are based on the Sagnac effect.
All current compact and transportable devices, however, show significant drift and limited sensitivity, which precludes their usage in fields of application where extremely small rotation rates in the nrad/s to prad/s range need to be measured. These limitations are of purely technical origin: they derive from residual movement of the gaseous laser medium, light scattering, and acoustic fiber noise.
Within the scope of an ERC Starting Grant, we have implemented a disruptively different design of a ring laser gyroscope that circumvents these limitations, now allowing for a compact and transportable device with near-zero drift and improved sensitivity.
Such a device is in high demand for example in seismology, where it would benefit earth quake and tsunami early warning systems. Sensing of environmental ground motion is imperative in the context of climate change. Monitoring the structural health of bridges and other large-scale constructions is another pressing task, where highly precise acquisition of rotation and distortion will have a massive impact on the early and reliable detection of structural fatigue.
Within GyroRevolution, we will demonstrate the supremacy of our concept and show operation outside of the laboratory. We will develop an IPR strategy and prepare a patent application. A detailed competitor and market analysis will constitute the first step on the pathway of deployment via a spin-out company. We will intensify contacts with companies to prepare for future partnerships. Importantly, we will get involved with potential end-users early-on to adapt our innovative technology to their needs. GyroRevolution marks the first and decisive step in technology transfer from fundamental research to a scalable device with a wide range of applications.
All current compact and transportable devices, however, show significant drift and limited sensitivity, which precludes their usage in fields of application where extremely small rotation rates in the nrad/s to prad/s range need to be measured. These limitations are of purely technical origin: they derive from residual movement of the gaseous laser medium, light scattering, and acoustic fiber noise.
Within the scope of an ERC Starting Grant, we have implemented a disruptively different design of a ring laser gyroscope that circumvents these limitations, now allowing for a compact and transportable device with near-zero drift and improved sensitivity.
Such a device is in high demand for example in seismology, where it would benefit earth quake and tsunami early warning systems. Sensing of environmental ground motion is imperative in the context of climate change. Monitoring the structural health of bridges and other large-scale constructions is another pressing task, where highly precise acquisition of rotation and distortion will have a massive impact on the early and reliable detection of structural fatigue.
Within GyroRevolution, we will demonstrate the supremacy of our concept and show operation outside of the laboratory. We will develop an IPR strategy and prepare a patent application. A detailed competitor and market analysis will constitute the first step on the pathway of deployment via a spin-out company. We will intensify contacts with companies to prepare for future partnerships. Importantly, we will get involved with potential end-users early-on to adapt our innovative technology to their needs. GyroRevolution marks the first and decisive step in technology transfer from fundamental research to a scalable device with a wide range of applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101123334 |
Start date: | 01-07-2023 |
End date: | 31-12-2024 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Rotation sensors, also called gyroscopes, are ubiquitous in consumer electronics, navigation, and environmental sensing. The most advanced gyroscopes are ring lasers that are based on the Sagnac effect.All current compact and transportable devices, however, show significant drift and limited sensitivity, which precludes their usage in fields of application where extremely small rotation rates in the nrad/s to prad/s range need to be measured. These limitations are of purely technical origin: they derive from residual movement of the gaseous laser medium, light scattering, and acoustic fiber noise.
Within the scope of an ERC Starting Grant, we have implemented a disruptively different design of a ring laser gyroscope that circumvents these limitations, now allowing for a compact and transportable device with near-zero drift and improved sensitivity.
Such a device is in high demand for example in seismology, where it would benefit earth quake and tsunami early warning systems. Sensing of environmental ground motion is imperative in the context of climate change. Monitoring the structural health of bridges and other large-scale constructions is another pressing task, where highly precise acquisition of rotation and distortion will have a massive impact on the early and reliable detection of structural fatigue.
Within GyroRevolution, we will demonstrate the supremacy of our concept and show operation outside of the laboratory. We will develop an IPR strategy and prepare a patent application. A detailed competitor and market analysis will constitute the first step on the pathway of deployment via a spin-out company. We will intensify contacts with companies to prepare for future partnerships. Importantly, we will get involved with potential end-users early-on to adapt our innovative technology to their needs. GyroRevolution marks the first and decisive step in technology transfer from fundamental research to a scalable device with a wide range of applications.
Status
SIGNEDCall topic
ERC-2023-POCUpdate Date
12-03-2024
Images
No images available.
Geographical location(s)