Summary
The binding kinetics of an affinity probe–the speed and duration with which it attaches to a target molecule–must be precisely tuned for numerous applications in therapeutics, super-resolution microscopy, and biochemical assays. The current methods of development lack the capability to specify these binding kinetics during probe design, resulting in the potential for effective drugs and relevant biological properties to remain undiscovered.
Here, I introduce a game-changing solution: Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS). SPARXS harnesses the power of single-molecule observations and subsequent high-throughput sequencing to simultaneously reveal the binding kinetics and sequences of millions of aptamers (affinity probes composed of nucleic acids). This process enables the tailored design of probes with the desired binding behavior for various applications.
This technology originated from my ERC Consolidator Grant project as a research tool, and its application can fulfill multiple practical demands. As SPARXS provides a particularly excellent fit for aptamer development, I have decided to enhance the platform with aptamer-specific features. Furthermore, I will conduct market research to understand the specific demands of users seeking defined-kinetic probes, which will facilitate commercialization of SPARXS-based aptamer design upon completion of the project.
In summary, SPARXS signifies a disruptive advancement in aptamer development and will revolutionize affinity probe design across the biotech industry. With minimal adaptations to the core technology, I anticipate a high potential for swift commercialization as a dedicated development platform.
Here, I introduce a game-changing solution: Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS). SPARXS harnesses the power of single-molecule observations and subsequent high-throughput sequencing to simultaneously reveal the binding kinetics and sequences of millions of aptamers (affinity probes composed of nucleic acids). This process enables the tailored design of probes with the desired binding behavior for various applications.
This technology originated from my ERC Consolidator Grant project as a research tool, and its application can fulfill multiple practical demands. As SPARXS provides a particularly excellent fit for aptamer development, I have decided to enhance the platform with aptamer-specific features. Furthermore, I will conduct market research to understand the specific demands of users seeking defined-kinetic probes, which will facilitate commercialization of SPARXS-based aptamer design upon completion of the project.
In summary, SPARXS signifies a disruptive advancement in aptamer development and will revolutionize affinity probe design across the biotech industry. With minimal adaptations to the core technology, I anticipate a high potential for swift commercialization as a dedicated development platform.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101158219 |
Start date: | 01-03-2024 |
End date: | 31-08-2025 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
The binding kinetics of an affinity probe–the speed and duration with which it attaches to a target molecule–must be precisely tuned for numerous applications in therapeutics, super-resolution microscopy, and biochemical assays. The current methods of development lack the capability to specify these binding kinetics during probe design, resulting in the potential for effective drugs and relevant biological properties to remain undiscovered.Here, I introduce a game-changing solution: Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS). SPARXS harnesses the power of single-molecule observations and subsequent high-throughput sequencing to simultaneously reveal the binding kinetics and sequences of millions of aptamers (affinity probes composed of nucleic acids). This process enables the tailored design of probes with the desired binding behavior for various applications.
This technology originated from my ERC Consolidator Grant project as a research tool, and its application can fulfill multiple practical demands. As SPARXS provides a particularly excellent fit for aptamer development, I have decided to enhance the platform with aptamer-specific features. Furthermore, I will conduct market research to understand the specific demands of users seeking defined-kinetic probes, which will facilitate commercialization of SPARXS-based aptamer design upon completion of the project.
In summary, SPARXS signifies a disruptive advancement in aptamer development and will revolutionize affinity probe design across the biotech industry. With minimal adaptations to the core technology, I anticipate a high potential for swift commercialization as a dedicated development platform.
Status
SIGNEDCall topic
ERC-2023-POCUpdate Date
12-03-2024
Images
No images available.
Geographical location(s)