Summary
"Over the last five decades, Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) have become indispensable in analytical chemistry and medical diagnostics. Progress in high magnetic fields has elevated resolution and sensitivity, enabling faster data collection at minimal concentrations. However, the sensitivity of magnetic resonance has bounds. Hyperpolarization techniques, particularly Dissolution Dynamic Nuclear Polarization, are gaining attention for enhancing sensitivity. The downside is that hyperpolarization equipment is costly, operationally expensive, and technically challenging, hindering its widespread adoption in MRI facilities. A promising solution involves using transient photoexcited agents like triplets or photogenerated radicals. Our recent innovation leverages phase separation to extend hyperpolarization lifetimes of certain 13C-labelled targets to several hours. This facilitates the storage and transport of hyperpolarized molecules at 4.2 K. The upcoming TRYP validation will adapt this phase-separation approach to various samples, such as molecules and biological fluids, without using contaminating solvents. This method could democratize hyperpolarization benefits for the broader NMR and MRI communities. Specialized centers could produce and distribute hyperpolarized ""consumables"" that can be easily introduced into NMR or MRI systems. These matrices can polarize almost any water-based molecular solution for extended periods, enabling their long-distance transport to MRI centers, and can be easily filtered using conventional technologies."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101157633 |
Start date: | 01-02-2024 |
End date: | 31-07-2025 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
"Over the last five decades, Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) have become indispensable in analytical chemistry and medical diagnostics. Progress in high magnetic fields has elevated resolution and sensitivity, enabling faster data collection at minimal concentrations. However, the sensitivity of magnetic resonance has bounds. Hyperpolarization techniques, particularly Dissolution Dynamic Nuclear Polarization, are gaining attention for enhancing sensitivity. The downside is that hyperpolarization equipment is costly, operationally expensive, and technically challenging, hindering its widespread adoption in MRI facilities. A promising solution involves using transient photoexcited agents like triplets or photogenerated radicals. Our recent innovation leverages phase separation to extend hyperpolarization lifetimes of certain 13C-labelled targets to several hours. This facilitates the storage and transport of hyperpolarized molecules at 4.2 K. The upcoming TRYP validation will adapt this phase-separation approach to various samples, such as molecules and biological fluids, without using contaminating solvents. This method could democratize hyperpolarization benefits for the broader NMR and MRI communities. Specialized centers could produce and distribute hyperpolarized ""consumables"" that can be easily introduced into NMR or MRI systems. These matrices can polarize almost any water-based molecular solution for extended periods, enabling their long-distance transport to MRI centers, and can be easily filtered using conventional technologies."Status
SIGNEDCall topic
ERC-2023-POCUpdate Date
12-03-2024
Images
No images available.
Geographical location(s)