EVA | Tailoring Organic-Inorganic Layered Structures to Build Functional Graded 2D Nanomaterials for Advanced Nanointerfaces

Summary
Advanced functional devices require integration of distinct materials (polymers, ceramics, metals) with different properties to achieve high performance in aerospace, biomedicine, electronic, and automotive. A major structural challenge is associated with localized (mechanical, thermal, electrical) stresses due to property mismatch at different scales, thus causing premature malfunction and failure. Research has focussed on compositional or structural material gradients (in at least one spatial direction) to enable fabrication of “in-one” body parts (mostly inorganics) with exceptional properties. Examples at rather macroscale include AlGaAs with graded bandgap for solar cells, or Al2O3/Ti with graded mechanical stiffness for bioimplants. However, in light of miniaturization technology, there is a need to translate this concept to nanomaterials. The EVA project aims to establish scientific principles to design and fabricate pioneering organic-inorganic 2D layered nanomaterials with functional gradients and continuous interfaces. My approach to designing such innovative nanomaterials is based on their compositional engineering by using correlations to perform an extended mapping of combinations and properties. I will explore self-assembly techniques in solution and translate them into automated processes to hierarchically build robust components with nm-layered thicknesses and mechanical and optoelectronic gradients. EVA will also demonstrate their use as advanced interfaces for soft bio-tissue coupling and flexible lighting nanosystems, providing answers from the nanoscale to key drivers in these fields: reliability, robustness, and durability. Through this interdisciplinary approach (physics, chemistry, mechanics, biology, and materials science), the envisioned atomically designed hybrids will be a hallmark for frontiers in fields such as energy, health, robotics, and digital technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101124411
Start date: 01-06-2024
End date: 31-05-2029
Total budget - Public funding: 1 996 889,00 Euro - 1 996 889,00 Euro
Cordis data

Original description

Advanced functional devices require integration of distinct materials (polymers, ceramics, metals) with different properties to achieve high performance in aerospace, biomedicine, electronic, and automotive. A major structural challenge is associated with localized (mechanical, thermal, electrical) stresses due to property mismatch at different scales, thus causing premature malfunction and failure. Research has focussed on compositional or structural material gradients (in at least one spatial direction) to enable fabrication of “in-one” body parts (mostly inorganics) with exceptional properties. Examples at rather macroscale include AlGaAs with graded bandgap for solar cells, or Al2O3/Ti with graded mechanical stiffness for bioimplants. However, in light of miniaturization technology, there is a need to translate this concept to nanomaterials. The EVA project aims to establish scientific principles to design and fabricate pioneering organic-inorganic 2D layered nanomaterials with functional gradients and continuous interfaces. My approach to designing such innovative nanomaterials is based on their compositional engineering by using correlations to perform an extended mapping of combinations and properties. I will explore self-assembly techniques in solution and translate them into automated processes to hierarchically build robust components with nm-layered thicknesses and mechanical and optoelectronic gradients. EVA will also demonstrate their use as advanced interfaces for soft bio-tissue coupling and flexible lighting nanosystems, providing answers from the nanoscale to key drivers in these fields: reliability, robustness, and durability. Through this interdisciplinary approach (physics, chemistry, mechanics, biology, and materials science), the envisioned atomically designed hybrids will be a hallmark for frontiers in fields such as energy, health, robotics, and digital technologies.

Status

SIGNED

Call topic

ERC-2023-COG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-COG ERC CONSOLIDATOR GRANTS