NEWROCK | New isotope tracers of rocky planet forming environments

Summary
The plethora of Earth-like exoplanets indicate that planet-formation is efficient, highlighting the need for unravelling the pathways to forming habitable worlds. The new planet-formation paradigm, i.e. pebble accretion, suggests that mm-to-cm sized pebbles are the main planetary building blocks as opposed to colliding proto-planetary bodies. Bulk samples of meteorites from asteroids, leftovers from the early Solar System, have been long used to infer the nature of Earth’s precursor material. However, pebble accretion predicts that pebble-like components of primitive chondrite meteorites provide a more accurate record of the precursor material to terrestrial planets, including the source of volatiles critical to life. The most abundant chondrite constituents are mm-sized chondrules hypothesized to be the pebbles driving planet formation. Chondrules formed within 5 Myr of the Solar System thus represent time-sequenced samples that can probe the nature of the matter, including its environment(s), that accreted to rocky planets. We will elucidate the origin and history of the matter precursor to terrestrial planets, by studying chondrules, matrix and refractory components in chondrites. This information is key for understanding the initial conditions allowing the formation of Earth-like planets. Combining isotope fingerprinting, age-dating and petrology, our data will be obtained using state-of-the-art techniques, including next generation collision cell and thermal ionization mass spectrometry as well as high-resolution imaging. We will identify the precursor matter to terrestrial planets and probe how its composition varied in space and time, identify the disk environment where the primordial population of planetesimals seeds formed and evaluate the role of thermal processing and outward recycling in modifying inner disk matter. With these goals, including high-risk high-gain ventures, we are in a strong position to make step change discoveries in cosmochemistry.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101124391
Start date: 01-08-2024
End date: 31-07-2029
Total budget - Public funding: 1 970 878,00 Euro - 1 970 878,00 Euro
Cordis data

Original description

The plethora of Earth-like exoplanets indicate that planet-formation is efficient, highlighting the need for unravelling the pathways to forming habitable worlds. The new planet-formation paradigm, i.e. pebble accretion, suggests that mm-to-cm sized pebbles are the main planetary building blocks as opposed to colliding proto-planetary bodies. Bulk samples of meteorites from asteroids, leftovers from the early Solar System, have been long used to infer the nature of Earth’s precursor material. However, pebble accretion predicts that pebble-like components of primitive chondrite meteorites provide a more accurate record of the precursor material to terrestrial planets, including the source of volatiles critical to life. The most abundant chondrite constituents are mm-sized chondrules hypothesized to be the pebbles driving planet formation. Chondrules formed within 5 Myr of the Solar System thus represent time-sequenced samples that can probe the nature of the matter, including its environment(s), that accreted to rocky planets. We will elucidate the origin and history of the matter precursor to terrestrial planets, by studying chondrules, matrix and refractory components in chondrites. This information is key for understanding the initial conditions allowing the formation of Earth-like planets. Combining isotope fingerprinting, age-dating and petrology, our data will be obtained using state-of-the-art techniques, including next generation collision cell and thermal ionization mass spectrometry as well as high-resolution imaging. We will identify the precursor matter to terrestrial planets and probe how its composition varied in space and time, identify the disk environment where the primordial population of planetesimals seeds formed and evaluate the role of thermal processing and outward recycling in modifying inner disk matter. With these goals, including high-risk high-gain ventures, we are in a strong position to make step change discoveries in cosmochemistry.

Status

SIGNED

Call topic

ERC-2023-COG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)