WIRE | Waves in the Inner Magnetosphere and their Effects on Radiation Belt Electrons

Summary
The magnetosphere is a natural plasma laboratory. Radiation belts in the magnetosphere are full of high energy particles. The energetic electrons in the Earth’s radiation belts can be hazardous to Earth-orbiting satellites and astronauts in space. Many of the space systems on which modern human society depends operate in this region. The fluxes of radiation belt electrons are very dynamic, which is not fully understood due to the delicate balance between various acceleration and loss processes. Wave-particle interactions are believed to play a crucial role in the acceleration and loss of these particles. To quantify the effect of different waves on the dynamics of radiation belt electrons, comprehensive wave models are needed. Currently, there are some wave models based on satellite measurements. However, the space coverage of these wave models is not sufficient due to the orbit limit of satellites.

In this project, combining state-of-the-art measurements from multiple satellites, comprehensive wave models will be developed. We will improve our sophisticated physics-based radiation belt dynamic model by using the wave models developed in this project and calculate diffusion coefficients using more realistic background magnetic field and plasma density models for the first time. Furthermore, fundamental acceleration and loss of energetic electrons caused by different waves in the Earth's radiation belts will be quantified. We will systematically validate simulation results against satellite measurements to understand the competition between acceleration and loss caused by various mechanisms.

All these improvements will be critically important for answering the overarching scientific question: Why do the Earth’s radiation belts respond differently to geomagnetic storms which have approximately the same intensity? The knowledge gained in this project can be useful for basics plasma physics and astronomy physics because the similar fundamental processes exist.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101124679
Start date: 01-06-2024
End date: 31-05-2029
Total budget - Public funding: 1 999 415,00 Euro - 1 999 415,00 Euro
Cordis data

Original description

The magnetosphere is a natural plasma laboratory. Radiation belts in the magnetosphere are full of high energy particles. The energetic electrons in the Earth’s radiation belts can be hazardous to Earth-orbiting satellites and astronauts in space. Many of the space systems on which modern human society depends operate in this region. The fluxes of radiation belt electrons are very dynamic, which is not fully understood due to the delicate balance between various acceleration and loss processes. Wave-particle interactions are believed to play a crucial role in the acceleration and loss of these particles. To quantify the effect of different waves on the dynamics of radiation belt electrons, comprehensive wave models are needed. Currently, there are some wave models based on satellite measurements. However, the space coverage of these wave models is not sufficient due to the orbit limit of satellites.

In this project, combining state-of-the-art measurements from multiple satellites, comprehensive wave models will be developed. We will improve our sophisticated physics-based radiation belt dynamic model by using the wave models developed in this project and calculate diffusion coefficients using more realistic background magnetic field and plasma density models for the first time. Furthermore, fundamental acceleration and loss of energetic electrons caused by different waves in the Earth's radiation belts will be quantified. We will systematically validate simulation results against satellite measurements to understand the competition between acceleration and loss caused by various mechanisms.

All these improvements will be critically important for answering the overarching scientific question: Why do the Earth’s radiation belts respond differently to geomagnetic storms which have approximately the same intensity? The knowledge gained in this project can be useful for basics plasma physics and astronomy physics because the similar fundamental processes exist.

Status

SIGNED

Call topic

ERC-2023-COG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-COG ERC CONSOLIDATOR GRANTS