TIMELIGHT | TIME-Varying Nanophotonics for New Regimes of QED LIGHT-Matter Interactions

Summary
Controlling light and its interaction with matter at the nanoscale is one of the major aims of current Science with applications ranging from energy-efficient photonic-based communications, quantum information processing, or high precision sensors. Owing to the hybrid light-matter modes supported by nanophotonic structures, from THz and IR polaritons in 2D materials to optical plasmonic resonances, nanophotonics offers an ideal platform for an exquisite control of light-matter interactions even at room temperature. Light concentrated at the nanoscale is a natural playground for quantum electro-dynamical (QED) processes, whereby light-matter interactions reveal their quantum nature.
However, conventional approaches to nanophotonics-based QED are limited by two fundamental principles: energy conservation and reciprocity. Overcoming these limitations would enable non-photon conserving devices and one-way channels, opening the door to a compact route to quantum photonic circuits. TIMELIGHT proposes the use of time-modulated media, whose optical parameters (e.g., permittivity) are dynamically modulated by an external actuation, to realise fundamentally new non-Hermitian and non-reciprocal QED effects. This theoretical project roots in recent experimental advances that have shown unprecedentedly large and fast modulations of nanophotonic structures.
TIMELIGHT will deliver advances in the following areas: (1) tuning of spontaneous emission and collective interactions of quantum emitters, (2) new forms of free electron radiation, (3) novel mechanisms for enhancing spontaneous photon generation, and (4) synthetic-motion based fluctuation-induced forces. TIMELIGHT will open the door to time-varying nanophotonics as a new paradigm to tailoring light-matter interactions at room temperature with non-Hermitian and non-reciprocal effects. This will shed light in the understanding of fundamental QED processes and ultimately be of interest to quantum photonic technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101115792
Start date: 01-10-2024
End date: 30-09-2029
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Controlling light and its interaction with matter at the nanoscale is one of the major aims of current Science with applications ranging from energy-efficient photonic-based communications, quantum information processing, or high precision sensors. Owing to the hybrid light-matter modes supported by nanophotonic structures, from THz and IR polaritons in 2D materials to optical plasmonic resonances, nanophotonics offers an ideal platform for an exquisite control of light-matter interactions even at room temperature. Light concentrated at the nanoscale is a natural playground for quantum electro-dynamical (QED) processes, whereby light-matter interactions reveal their quantum nature.
However, conventional approaches to nanophotonics-based QED are limited by two fundamental principles: energy conservation and reciprocity. Overcoming these limitations would enable non-photon conserving devices and one-way channels, opening the door to a compact route to quantum photonic circuits. TIMELIGHT proposes the use of time-modulated media, whose optical parameters (e.g., permittivity) are dynamically modulated by an external actuation, to realise fundamentally new non-Hermitian and non-reciprocal QED effects. This theoretical project roots in recent experimental advances that have shown unprecedentedly large and fast modulations of nanophotonic structures.
TIMELIGHT will deliver advances in the following areas: (1) tuning of spontaneous emission and collective interactions of quantum emitters, (2) new forms of free electron radiation, (3) novel mechanisms for enhancing spontaneous photon generation, and (4) synthetic-motion based fluctuation-induced forces. TIMELIGHT will open the door to time-varying nanophotonics as a new paradigm to tailoring light-matter interactions at room temperature with non-Hermitian and non-reciprocal effects. This will shed light in the understanding of fundamental QED processes and ultimately be of interest to quantum photonic technologies.

Status

SIGNED

Call topic

ERC-2023-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-STG ERC STARTING GRANTS