INTREPID | INnovative TRiggEr techniques for beyond the standard model PhysIcs Discovery at the LHC

Summary
The discovery of the Higgs boson at the Large Hadron Collider (LHC) closes a central chapter of the standard model (SM) of particle physics while raising several questions, such as the nature of dark matter, an explanation to neutrino masses, or the origin of baryon asymmetry in the Universe. The answer to those questions could be linked to the production of beyond the SM (BSM) particles which may have long lifetimes, compared to SM particles at the weak scale. If these long-lived particles (LLPs) were to be produced at the LHC, they would yield non-standard signatures which require dedicated identification algorithms. A complex filtering (trigger) system running sophisticated algorithms allows to decide, in real time, whether a given event of interest should be saved for data analysis or discarded. The general goal of this proposal is to enhance the trigger capabilities to enable the discovery of LLPs and thus find evidence of BSM physics exploring innovative technologies that may be of use in future facilities. With several years before the start of the High-Luminosity LHC (HL-LHC), it is now the perfect time to explore alternative trigger architectures and technologies not considered in the plans of the collaboration and that could not be explored otherwise. To this end, I will use a multidisciplinary approach involving advanced Machine Learning techniques and top-of-the-line ultra-fast processing platforms to propose an innovative solution that will improve the capabilities of future trigger systems. The foreseen studies might be the only way in which LLPs can be discovered at the HL-LHC. Any manifestation of such particles will revolutionise the field of High Energy Physics and help to answer several fundamental questions regarding the energy scale and nature of the BSM physics. Beside progressing in the frontiers of science, the designed techniques can be of great use for industries requiring real-time processing of large data-volumes to extract features.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101115353
Start date: 01-10-2023
End date: 30-09-2028
Total budget - Public funding: 1 499 375,00 Euro - 1 499 375,00 Euro
Cordis data

Original description

The discovery of the Higgs boson at the Large Hadron Collider (LHC) closes a central chapter of the standard model (SM) of particle physics while raising several questions, such as the nature of dark matter, an explanation to neutrino masses, or the origin of baryon asymmetry in the Universe. The answer to those questions could be linked to the production of beyond the SM (BSM) particles which may have long lifetimes, compared to SM particles at the weak scale. If these long-lived particles (LLPs) were to be produced at the LHC, they would yield non-standard signatures which require dedicated identification algorithms. A complex filtering (trigger) system running sophisticated algorithms allows to decide, in real time, whether a given event of interest should be saved for data analysis or discarded. The general goal of this proposal is to enhance the trigger capabilities to enable the discovery of LLPs and thus find evidence of BSM physics exploring innovative technologies that may be of use in future facilities. With several years before the start of the High-Luminosity LHC (HL-LHC), it is now the perfect time to explore alternative trigger architectures and technologies not considered in the plans of the collaboration and that could not be explored otherwise. To this end, I will use a multidisciplinary approach involving advanced Machine Learning techniques and top-of-the-line ultra-fast processing platforms to propose an innovative solution that will improve the capabilities of future trigger systems. The foreseen studies might be the only way in which LLPs can be discovered at the HL-LHC. Any manifestation of such particles will revolutionise the field of High Energy Physics and help to answer several fundamental questions regarding the energy scale and nature of the BSM physics. Beside progressing in the frontiers of science, the designed techniques can be of great use for industries requiring real-time processing of large data-volumes to extract features.

Status

SIGNED

Call topic

ERC-2023-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-STG ERC STARTING GRANTS