Summary
Due to their unique physicochemical properties, nanopatterned surfaces can contribute to important technological innovations for efficient optical and communication devices, long-lasting batteries, and ultrasensitive diagnostic devices. Bottom-up synthesis enable to construct nanomaterials atom-by-atom from precursors using synthetic chemistry, usually producing colloidal nanoparticle suspensions that are later assembled on a surface. Alternatively, the fabrication process can be greatly simplified by instead applying bottom-up growth directly on a substrate. However, these “in situ” growth routes remain largely unexplored and poorly understood.
To address this knowledge gap and improve versatility and quality of this class of approaches, I propose to use an unconventional methodology called “chemical contrast in situ growth” or CC-iSG, where precise nanometric chemical contrast drives nanostructure formation at pre-determined sites.
With NANOGROWDIRECT, I will develop a foundational understanding of CC-iSG through the interrogation of fundamental synthetic aspects, and maximize its potential for achieving exemplary control over nanoscale properties of nanosurfaces and metamaterials. I will interrogate the effect of the identity, concentration, and delivery of various reactants to the pre-determined reaction sites, with focus on chemical control (Objective 1) and fluid dynamic control (Objective 2). I will also test the use non-chemical external factors, such as electromagnetic fields (Objective 3), and electrochemical potentials (Objective 4).
In the short term, CC-iSG will open up unexplored directions for engineering physicochemical properties of patterned nanosurfaces, combining wet-chemistry and external stimuli. Consequently in the long term, the far-reaching impacts of NANOGROWDIRECT will go beyond the field of nanochemistry, and yield breakthroughs in (photo/electro)catalysis, energy production and storage, medicine, and communications.
To address this knowledge gap and improve versatility and quality of this class of approaches, I propose to use an unconventional methodology called “chemical contrast in situ growth” or CC-iSG, where precise nanometric chemical contrast drives nanostructure formation at pre-determined sites.
With NANOGROWDIRECT, I will develop a foundational understanding of CC-iSG through the interrogation of fundamental synthetic aspects, and maximize its potential for achieving exemplary control over nanoscale properties of nanosurfaces and metamaterials. I will interrogate the effect of the identity, concentration, and delivery of various reactants to the pre-determined reaction sites, with focus on chemical control (Objective 1) and fluid dynamic control (Objective 2). I will also test the use non-chemical external factors, such as electromagnetic fields (Objective 3), and electrochemical potentials (Objective 4).
In the short term, CC-iSG will open up unexplored directions for engineering physicochemical properties of patterned nanosurfaces, combining wet-chemistry and external stimuli. Consequently in the long term, the far-reaching impacts of NANOGROWDIRECT will go beyond the field of nanochemistry, and yield breakthroughs in (photo/electro)catalysis, energy production and storage, medicine, and communications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101115164 |
Start date: | 01-06-2024 |
End date: | 31-05-2029 |
Total budget - Public funding: | 2 125 000,00 Euro - 2 125 000,00 Euro |
Cordis data
Original description
Due to their unique physicochemical properties, nanopatterned surfaces can contribute to important technological innovations for efficient optical and communication devices, long-lasting batteries, and ultrasensitive diagnostic devices. Bottom-up synthesis enable to construct nanomaterials atom-by-atom from precursors using synthetic chemistry, usually producing colloidal nanoparticle suspensions that are later assembled on a surface. Alternatively, the fabrication process can be greatly simplified by instead applying bottom-up growth directly on a substrate. However, these “in situ” growth routes remain largely unexplored and poorly understood.To address this knowledge gap and improve versatility and quality of this class of approaches, I propose to use an unconventional methodology called “chemical contrast in situ growth” or CC-iSG, where precise nanometric chemical contrast drives nanostructure formation at pre-determined sites.
With NANOGROWDIRECT, I will develop a foundational understanding of CC-iSG through the interrogation of fundamental synthetic aspects, and maximize its potential for achieving exemplary control over nanoscale properties of nanosurfaces and metamaterials. I will interrogate the effect of the identity, concentration, and delivery of various reactants to the pre-determined reaction sites, with focus on chemical control (Objective 1) and fluid dynamic control (Objective 2). I will also test the use non-chemical external factors, such as electromagnetic fields (Objective 3), and electrochemical potentials (Objective 4).
In the short term, CC-iSG will open up unexplored directions for engineering physicochemical properties of patterned nanosurfaces, combining wet-chemistry and external stimuli. Consequently in the long term, the far-reaching impacts of NANOGROWDIRECT will go beyond the field of nanochemistry, and yield breakthroughs in (photo/electro)catalysis, energy production and storage, medicine, and communications.
Status
SIGNEDCall topic
ERC-2023-STGUpdate Date
12-03-2024
Images
No images available.
Geographical location(s)