NTopQuant | New Trends of Non-Hermitian Topology in Open and Correlated Quantum Systems

Summary
Non-Hermiticity plays a central role in describing open systems, which in recent years has been investigated in the context of topology revealing a dramatic enrichment of the phenomenology of topological phases. A particular focus has been on the appearance of truly non-Hermitian (NH) degeneracies known as exceptional points (EPs) at which not only the eigenvalues but also the eigenvectors coalesce. In their most elementary form, EPs reveal intriguing phenomena, such as unidirectional transmission, and one-sided visibility. Due to the novelty of the field, research has only recently started to dive into the topic of higher-order EPs, and the importance of EPs beyond classical systems. NTopQuant elucidates the role played by exceptional nodal phases in open and correlated quantum systems by providing a new perspective on open quantum materials.
NTopQuant not only paves the way towards gaining profound insights into the properties of higher-order exceptional nodal phases, but also expands our understanding of open and correlated quantum systems. Making connection to experiment, NTopQuant studies nonlinear optical systems in close collaboration with experimentalists at the host institute. While EPs are typically realized in coupled systems, we focus on single devices thus proposing a new path towards studying EPs in optical systems. Equally relevant for experiment are Moiré materials, which are powerful quantum simulators realizing exotic strongly correlated phases. NTopQuant investigates these materials in their open form, which not only results in a new research direction but also paves the way towards studying NH effects in strongly correlated systems in the lab.
The PI is considered an expert in NH topology, and the host institute offers a vibrant scientific environment. As such, they form the perfect combination for carrying out this highly interdisciplinary research program with the goal to establish a novel perspective on open and correlated quantum systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101116680
Start date: 01-10-2023
End date: 30-09-2028
Total budget - Public funding: 1 496 250,00 Euro - 1 496 250,00 Euro
Cordis data

Original description

Non-Hermiticity plays a central role in describing open systems, which in recent years has been investigated in the context of topology revealing a dramatic enrichment of the phenomenology of topological phases. A particular focus has been on the appearance of truly non-Hermitian (NH) degeneracies known as exceptional points (EPs) at which not only the eigenvalues but also the eigenvectors coalesce. In their most elementary form, EPs reveal intriguing phenomena, such as unidirectional transmission, and one-sided visibility. Due to the novelty of the field, research has only recently started to dive into the topic of higher-order EPs, and the importance of EPs beyond classical systems. NTopQuant elucidates the role played by exceptional nodal phases in open and correlated quantum systems by providing a new perspective on open quantum materials.
NTopQuant not only paves the way towards gaining profound insights into the properties of higher-order exceptional nodal phases, but also expands our understanding of open and correlated quantum systems. Making connection to experiment, NTopQuant studies nonlinear optical systems in close collaboration with experimentalists at the host institute. While EPs are typically realized in coupled systems, we focus on single devices thus proposing a new path towards studying EPs in optical systems. Equally relevant for experiment are Moiré materials, which are powerful quantum simulators realizing exotic strongly correlated phases. NTopQuant investigates these materials in their open form, which not only results in a new research direction but also paves the way towards studying NH effects in strongly correlated systems in the lab.
The PI is considered an expert in NH topology, and the host institute offers a vibrant scientific environment. As such, they form the perfect combination for carrying out this highly interdisciplinary research program with the goal to establish a novel perspective on open and correlated quantum systems.

Status

SIGNED

Call topic

ERC-2023-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-STG ERC STARTING GRANTS