ExCEL | Exciting Iron Catalysis: A route towards sustainable cross-couplings Enabled by Light

Summary
The manufacture of many high-value chemicals that sustain our daily lives depends on the ability of palladium catalysts to link together (cross-coupling) complex structural motifs. Yet, in view of the rapid increase of the price of palladium and its progressive depletion, it is crucial to invent alternative and more sustainable systems based on Earth-abundant metals to ensure the viability in the long term of these strategic processes that provide us with materials, agrochemicals or medicines. Iron is considered the most benign of transition metals because it is endless, inexpensive and biocompatible. However, despite its early discovery, iron-catalyzed cross-couplings have been underutilized owing to their narrower scope and the need for strong organometallic reductants or harsh conditions, which hampers their applicability in complex targets and densely-functionalized substrates. This proposal introduces a fundamentally new approach to overcome the issues that restrain the development of iron-catalyzed cross-couplings, exploiting the innate ability of iron complexes to harvest light and repurposing it to “activate” catalysis. Capitalizing on novel modes of reactivity accessed upon visible-light irradiation, this research programme offers a strategy to access key catalytically active iron species under mild conditions without the use of strong organometallic reductants, enabling unprecedented transformations with extended scope. ExCEL recruits charge-transfer excited states of iron complexes, providing access to Fe(I)/Fe(III) and Fe(0)/Fe(II) catalytic manifolds to achieve C–C and C–heteroatom bond formation as well as multicomponent reactions that are currently out of the reach of state-of-art iron catalysis. Overall, this proposal aims to introduce a new paradigm to upgrade and unleash the full potential of iron catalysis in organic synthesis, and will pave the way for the discovery of exciting new synthetic transformations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101116163
Start date: 01-01-2024
End date: 31-12-2028
Total budget - Public funding: 1 499 995,00 Euro - 1 499 995,00 Euro
Cordis data

Original description

The manufacture of many high-value chemicals that sustain our daily lives depends on the ability of palladium catalysts to link together (cross-coupling) complex structural motifs. Yet, in view of the rapid increase of the price of palladium and its progressive depletion, it is crucial to invent alternative and more sustainable systems based on Earth-abundant metals to ensure the viability in the long term of these strategic processes that provide us with materials, agrochemicals or medicines. Iron is considered the most benign of transition metals because it is endless, inexpensive and biocompatible. However, despite its early discovery, iron-catalyzed cross-couplings have been underutilized owing to their narrower scope and the need for strong organometallic reductants or harsh conditions, which hampers their applicability in complex targets and densely-functionalized substrates. This proposal introduces a fundamentally new approach to overcome the issues that restrain the development of iron-catalyzed cross-couplings, exploiting the innate ability of iron complexes to harvest light and repurposing it to “activate” catalysis. Capitalizing on novel modes of reactivity accessed upon visible-light irradiation, this research programme offers a strategy to access key catalytically active iron species under mild conditions without the use of strong organometallic reductants, enabling unprecedented transformations with extended scope. ExCEL recruits charge-transfer excited states of iron complexes, providing access to Fe(I)/Fe(III) and Fe(0)/Fe(II) catalytic manifolds to achieve C–C and C–heteroatom bond formation as well as multicomponent reactions that are currently out of the reach of state-of-art iron catalysis. Overall, this proposal aims to introduce a new paradigm to upgrade and unleash the full potential of iron catalysis in organic synthesis, and will pave the way for the discovery of exciting new synthetic transformations.

Status

SIGNED

Call topic

ERC-2023-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-STG ERC STARTING GRANTS