SpaRC | Revealing the wiring rules of neural circuit assembly with spatiotemporally resolved molecular connectomics

Summary
The human genome contains several thousand genes that play a key role in the development of the brain’s connectome, a precise assembly of neural connections with billions of neurons and trillions of synapses. How is genomic information translated into synapse-specific connectivity underlying behavior and cognition? Answering this fundamental question will provide important insights about the principles underlying nervous system development and is relevant for neurodevelopmental disorders such as autism. However, current approaches to measure neuronal connectivity have intrinsic limitations that prevent combined analysis of connected neurons, and their gene expression profiles at a scale that matches the complexity of the mammalian nervous system. Here I propose to develop a novel approach for massively parallel neural circuit tracing with barcoded rabies virus and 3D intact-tissue RNA-sequencing. This will permit a comprehensive understanding about neural network architecture via the large-scale measurement of molecular, cellular, and circuit-level mechanisms in the mouse brain. Compared to current efforts that require vast scientific resources to map synaptic connectivity among a few cells or small tissue volumes, my approach will enable routine measurements of connections among thousands of single neurons with molecular detail. Based on my expertise in in vivo barcoding I will conduct a longitudinal study to reveal the wiring rules underlying the spatiotemporal development of neural circuits from diverse neuron types in the mouse prefrontal cortex, a brain region that plays a key role in cognition. I will follow a cross-sectional approach to unravel the effects of distinct mutations on neuronal wiring in the prefrontal cortex in two mouse models of autism (Cntnap2-/-, Syngap1+/-). My work will provide an innovative experimental platform and provide mechanistic insights into the developmental algorithms that the genome uses to encode the connectome.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101117989
Start date: 01-06-2024
End date: 31-05-2029
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

The human genome contains several thousand genes that play a key role in the development of the brain’s connectome, a precise assembly of neural connections with billions of neurons and trillions of synapses. How is genomic information translated into synapse-specific connectivity underlying behavior and cognition? Answering this fundamental question will provide important insights about the principles underlying nervous system development and is relevant for neurodevelopmental disorders such as autism. However, current approaches to measure neuronal connectivity have intrinsic limitations that prevent combined analysis of connected neurons, and their gene expression profiles at a scale that matches the complexity of the mammalian nervous system. Here I propose to develop a novel approach for massively parallel neural circuit tracing with barcoded rabies virus and 3D intact-tissue RNA-sequencing. This will permit a comprehensive understanding about neural network architecture via the large-scale measurement of molecular, cellular, and circuit-level mechanisms in the mouse brain. Compared to current efforts that require vast scientific resources to map synaptic connectivity among a few cells or small tissue volumes, my approach will enable routine measurements of connections among thousands of single neurons with molecular detail. Based on my expertise in in vivo barcoding I will conduct a longitudinal study to reveal the wiring rules underlying the spatiotemporal development of neural circuits from diverse neuron types in the mouse prefrontal cortex, a brain region that plays a key role in cognition. I will follow a cross-sectional approach to unravel the effects of distinct mutations on neuronal wiring in the prefrontal cortex in two mouse models of autism (Cntnap2-/-, Syngap1+/-). My work will provide an innovative experimental platform and provide mechanistic insights into the developmental algorithms that the genome uses to encode the connectome.

Status

SIGNED

Call topic

ERC-2023-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-STG ERC STARTING GRANTS