NeuroQuality | Mechanisms of human co-translational quality control and it’s role in neural tissue.

Summary
Ribosome-associated quality control (RQC) is crucial for degrading truncated nascent proteins produced on aberrant mRNAs. This is done by elongation of the nascent chain on the large ribosomal subunit in the absence of mRNA and the small ribosomal subunit (CAT tailing) and by marking the nascent chain for degradation. Mutations in RQC components cause neurodegeneration both in animal models and human patients. Moreover, RQC insufficiency and subsequent protein aggregation critically contribute to proteostasis impairment and systemic decline during ageing. Strikingly, we lack mechanistic understanding of this crucial process in humans.
This project stems from my post-doctoral research, in which I have solved the structure of the yeast RQC complex and discovered a novel RQC factor, the eIF5A. This conserved protein is critical in yeast RQC and was recently implicated in brain development and Huntington's disease. Moreover, I have developed a human cell-free translation extract, which enables structural studies of co-translational processes in the human system. In the proposed research, we will provide mechanistic understanding of CAT tailing and nascent chain degradation in human RQC using cryo-EM. We will define working principles of RQC components and the mechanisms by which their disease-causing mutations specifically affect neurons in vivo using the C. elegans as a model organism.
Our approach utilizes a multidisciplinary approach to provide detailed mechanistic understanding of the critical RQC system in combination with an in vivo study to reveal processes leading to RQC-driven pathological changes in neural tissue. Since the RQC pathway is conserved in all kingdoms of life and serves a pivotal role in protein homeostasis with critical implications for neurodegenerative disorders and ageing, our findings will have important implications for human health and the potential to reveal novel drug targets.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101117861
Start date: 01-07-2024
End date: 30-06-2029
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Ribosome-associated quality control (RQC) is crucial for degrading truncated nascent proteins produced on aberrant mRNAs. This is done by elongation of the nascent chain on the large ribosomal subunit in the absence of mRNA and the small ribosomal subunit (CAT tailing) and by marking the nascent chain for degradation. Mutations in RQC components cause neurodegeneration both in animal models and human patients. Moreover, RQC insufficiency and subsequent protein aggregation critically contribute to proteostasis impairment and systemic decline during ageing. Strikingly, we lack mechanistic understanding of this crucial process in humans.
This project stems from my post-doctoral research, in which I have solved the structure of the yeast RQC complex and discovered a novel RQC factor, the eIF5A. This conserved protein is critical in yeast RQC and was recently implicated in brain development and Huntington's disease. Moreover, I have developed a human cell-free translation extract, which enables structural studies of co-translational processes in the human system. In the proposed research, we will provide mechanistic understanding of CAT tailing and nascent chain degradation in human RQC using cryo-EM. We will define working principles of RQC components and the mechanisms by which their disease-causing mutations specifically affect neurons in vivo using the C. elegans as a model organism.
Our approach utilizes a multidisciplinary approach to provide detailed mechanistic understanding of the critical RQC system in combination with an in vivo study to reveal processes leading to RQC-driven pathological changes in neural tissue. Since the RQC pathway is conserved in all kingdoms of life and serves a pivotal role in protein homeostasis with critical implications for neurodegenerative disorders and ageing, our findings will have important implications for human health and the potential to reveal novel drug targets.

Status

SIGNED

Call topic

ERC-2023-STG

Update Date

12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2023-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2023-STG ERC STARTING GRANTS