Summary
The development of high-speed communication requirements due to explosive growth of subscribers each year has directed researchers to plan the next generation communication systems that can manage the current growing demand. The millimeter microwaves waves, which function within 30 GHz to 300 GHz, can become prospective carriers for delivering large amounts of data. But, in hospital setups, these radio waves are exposed to strict guidelines due to their direct impact on patient's health as well as high interference with other medical equipment which again imposes severe challenges for patients. The Free Space Optical System might become an attractive solution to transmit medical data over light waves as a carrier. LiFi (light fidelity) is a bidirectional wireless system that transmits data via LEDs or infrared light. LEDs are much cheaper than LASER, making the FSO link cost-effective. LiFI does not interfere with the hospital equipment that relies on radio waves. LiFi is one of the future wireless communication technologies, which will help to develop next-generation hospitals with ultra-high-speed transmission. The overall objective of this research proposal is the development of Ultra Speed, resilient, cost-effective LiFi based Free Space Optical Communication to connect Hospitals Departments -clinics and home care patients for next generation Hospitals. However, fading due to atmospheric turbulence is the main problem affecting the FSO communication system performance. Therefore a case study on how the atmosphere around Malta affects light transmission in free space will be carried out to take measures to improve connectivity. After that the researcher will analyses developed FSO link performance on the ground considering different weather conditions(fog, haze, rain) of Malta and internal system parameters (Transmitter divergence angle, Receiver aperture diameter and link range on data rate, power received and SNR).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101162647 |
Start date: | 26-09-2024 |
End date: | 31-05-2026 |
Total budget - Public funding: | - 177 251,00 Euro |
Cordis data
Original description
The development of high-speed communication requirements due to explosive growth of subscribers each year has directed researchers to plan the next generation communication systems that can manage the current growing demand. The millimeter microwaves waves, which function within 30 GHz to 300 GHz, can become prospective carriers for delivering large amounts of data. But, in hospital setups, these radio waves are exposed to strict guidelines due to their direct impact on patient's health as well as high interference with other medical equipment which again imposes severe challenges for patients. The Free Space Optical System might become an attractive solution to transmit medical data over light waves as a carrier. LiFi (light fidelity) is a bidirectional wireless system that transmits data via LEDs or infrared light. LEDs are much cheaper than LASER, making the FSO link cost-effective. LiFI does not interfere with the hospital equipment that relies on radio waves. LiFi is one of the future wireless communication technologies, which will help to develop next-generation hospitals with ultra-high-speed transmission. The overall objective of this research proposal is the development of Ultra Speed, resilient, cost-effective LiFi based Free Space Optical Communication to connect Hospitals Departments -clinics and home care patients for next generation Hospitals. However, fading due to atmospheric turbulence is the main problem affecting the FSO communication system performance. Therefore a case study on how the atmosphere around Malta affects light transmission in free space will be carried out to take measures to improve connectivity. After that the researcher will analyses developed FSO link performance on the ground considering different weather conditions(fog, haze, rain) of Malta and internal system parameters (Transmitter divergence angle, Receiver aperture diameter and link range on data rate, power received and SNR).Status
SIGNEDCall topic
HORIZON-WIDERA-2022-TALENTS-04-01Update Date
12-03-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all