ECaBox | "ECaBox ""Eyes in a Care Box"": Regenerating human retina from resuscitated cadaveric eyes"

Summary
In the last decade, basic and translational research dramatically expanded the development of new drug and regenerative therapies. Nevertheless, numerous potential therapies end up in the “valley of death” due to high attrition rates of preclinical development. More cost-effective preclinical research is needed to support radically new therapeutic interventions (e.g. regenerative medicine). Yet, preclinical research still lacks adequate models of human organs and even though human organoids approaches are a major step forward in mimicking physiological conditions, they fail to reflect the overall tissue physiology and complexity. To address this demand, we aim to develop a revolutionary platform, the ECaBox (Eyes in a Care Box) to resuscitate the human cadaveric eye while ensuring eye function and structure ex vivo for an unmatched time-period. This new technology will challenge current paradigms of testing the efficacy and safety of regenerative therapies ex vivo. We will therefore, explore the potential of this forefront technology by testing a regenerative therapy approach for retina degeneration. Currently, human eyes can be kept at 4ºC for 2 days before going massive and irreversible cell and tissue damage. Human dissected retinae from cadaveric eyes can be preserved for maximum 1 week and non-vascularised human eye organoids fail to recapitulate the vascular and tissue systems. Hence, ECaBox will be a disruptive technology with a tremendous impact allowing to: 1) resuscitate human eyes to test human eye therapies ex vivo, 2) bypass major ethical restrictions of human experimentation, 3) serve as a proof of concept to develop therapies also in other organs preserved ex vivo and 4) transform the existing organ transplantation field. This is a highly interdisciplinary project that integrates expertise in biology, biotechnology, modelling, engineering and physics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/964342
Start date: 01-09-2021
End date: 31-08-2025
Total budget - Public funding: 3 552 143,75 Euro - 3 552 143,00 Euro
Cordis data

Original description

In the last decade, basic and translational research dramatically expanded the development of new drug and regenerative therapies. Nevertheless, numerous potential therapies end up in the “valley of death” due to high attrition rates of preclinical development. More cost-effective preclinical research is needed to support radically new therapeutic interventions (e.g. regenerative medicine). Yet, preclinical research still lacks adequate models of human organs and even though human organoids approaches are a major step forward in mimicking physiological conditions, they fail to reflect the overall tissue physiology and complexity. To address this demand, we aim to develop a revolutionary platform, the ECaBox (Eyes in a Care Box) to resuscitate the human cadaveric eye while ensuring eye function and structure ex vivo for an unmatched time-period. This new technology will challenge current paradigms of testing the efficacy and safety of regenerative therapies ex vivo. We will therefore, explore the potential of this forefront technology by testing a regenerative therapy approach for retina degeneration. Currently, human eyes can be kept at 4ºC for 2 days before going massive and irreversible cell and tissue damage. Human dissected retinae from cadaveric eyes can be preserved for maximum 1 week and non-vascularised human eye organoids fail to recapitulate the vascular and tissue systems. Hence, ECaBox will be a disruptive technology with a tremendous impact allowing to: 1) resuscitate human eyes to test human eye therapies ex vivo, 2) bypass major ethical restrictions of human experimentation, 3) serve as a proof of concept to develop therapies also in other organs preserved ex vivo and 4) transform the existing organ transplantation field. This is a highly interdisciplinary project that integrates expertise in biology, biotechnology, modelling, engineering and physics.

Status

SIGNED

Call topic

FETOPEN-01-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-01-2018-2019-2020 FET-Open Challenging Current Thinking