Summary
Two original breakthrough technologies of Gas Ion Distillation (GID) and Sequential Ion Processing (PRO) provide live visualization (vis) of volatile chemicals in ambient environments giving humans access to a molecular world heretofore unseen. Molecular auras in GIDPROvis are delivered by small, portable GIDPRO analyzers based on high speed separation of ions derived from individual chemicals and their identification using an emerging generation of ion analyzers. In GID, chemicals are separated as gas ions through reaction thermochemistry, replacing classic separations based on physical properties. This is seen as a revolution or a paradigm shift as “new chromatography” making columns and stationary phases obsolete. In PRO, ions are sequentially processed using emerging discoveries of fragmentation of gas ions in strong electric fields. Structurally significant information in fragment ions permits chemical identifications informing a central data hub and enabling live display of molecular auras. Certain chemical properties, such as toxicity and reactivity, are integrated to “fit the goals, tasks, and needs of individual users” for effective information flow with the human-machine system. While GIDPROvis is principally technology driven, aspects of emotional responses of humans to massive access to chemical information, impacts from these perceptions, and human psychology will be explored in simulated, controlled visual experiences of chemical auras. Our aim is to launch a fourth generation of methodology for chemical analysis aligned intrinsically to 5G and IoT communication with miniaturized, ultra-low detection level, live data analyzers to detect and identify chemicals in complex matrices.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/899261 |
Start date: | 01-10-2020 |
End date: | 30-09-2023 |
Total budget - Public funding: | 3 904 960,00 Euro - 3 904 960,00 Euro |
Cordis data
Original description
Two original breakthrough technologies of Gas Ion Distillation (GID) and Sequential Ion Processing (PRO) provide live visualization (vis) of volatile chemicals in ambient environments giving humans access to a molecular world heretofore unseen. Molecular auras in GIDPROvis are delivered by small, portable GIDPRO analyzers based on high speed separation of ions derived from individual chemicals and their identification using an emerging generation of ion analyzers. In GID, chemicals are separated as gas ions through reaction thermochemistry, replacing classic separations based on physical properties. This is seen as a revolution or a paradigm shift as “new chromatography” making columns and stationary phases obsolete. In PRO, ions are sequentially processed using emerging discoveries of fragmentation of gas ions in strong electric fields. Structurally significant information in fragment ions permits chemical identifications informing a central data hub and enabling live display of molecular auras. Certain chemical properties, such as toxicity and reactivity, are integrated to “fit the goals, tasks, and needs of individual users” for effective information flow with the human-machine system. While GIDPROvis is principally technology driven, aspects of emotional responses of humans to massive access to chemical information, impacts from these perceptions, and human psychology will be explored in simulated, controlled visual experiences of chemical auras. Our aim is to launch a fourth generation of methodology for chemical analysis aligned intrinsically to 5G and IoT communication with miniaturized, ultra-low detection level, live data analyzers to detect and identify chemicals in complex matrices.Status
CLOSEDCall topic
FETOPEN-01-2018-2019-2020Update Date
27-04-2024
Images
No images available.
Geographical location(s)