BoneFix | BoneFix: A Paradigm Shift in Fracture Fixations via On-Site Fabrication of Bone Restoration Patches

Summary
As Europe’s population rapidly ages so too does the socioeconomic cost of bone fractures. According to WHO, the total number of osteoporosis-related fractures in EU patients will rise to 4.5 million in 2025, which translates to 8.5 incidents per minute. Unfortunately, clinically used metal fixators are old-fashion solutions and their rigid design combined with open surgery and general anaesthesia, make them poor fixators for fractures on thin, fragile, inaccessible and shattered bone. Our solution is BoneFix, a novel class of bone adhesives that will allow for personalized surgical treatment of bone fractures via minimal invasive surgery under local anaesthesia. This will be accomplished by developing a novel library of biocompatible, biodegradable triazine monomers, linear polycarbonates and multi-purpose dendritic materials, capable of binding to wet bone, together with strong biodegradable organic/ceramic composites. Building from the bottom up, the concept involves three domains: a bone substitute void filler, topological mechanical fixation patch, and a protective anti-bacterial hydrogel layer. The components will be delivered through narrow gauge needles and solidify “on fracture site” via High Energy Visible Light Off-Stoichiometric Thiol-Ene Coupling chemistry (HEV-OSTEC). Collectively, these will form a Bone Restoration Patch (BRP) - a customizable, universal solution for fractures that upon complete healing will be fully resorbed. The BRPs will be thoroughly evaluated by stakeholders in order to assess relevant properties, both ex vivo and finally in vivo on relevant animal models. The ultimate goal is to cement a new disruptive technology and a paradigm shift in clinical interventions of bone fractures in which BoneFix heals, fixates and protects complex fractures making screws, plates and open surgery obsolete.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/952150
Start date: 01-10-2020
End date: 30-06-2025
Total budget - Public funding: 3 983 468,13 Euro - 3 983 468,00 Euro
Cordis data

Original description

As Europe’s population rapidly ages so too does the socioeconomic cost of bone fractures. According to WHO, the total number of osteoporosis-related fractures in EU patients will rise to 4.5 million in 2025, which translates to 8.5 incidents per minute. Unfortunately, clinically used metal fixators are old-fashion solutions and their rigid design combined with open surgery and general anaesthesia, make them poor fixators for fractures on thin, fragile, inaccessible and shattered bone. Our solution is BoneFix, a novel class of bone adhesives that will allow for personalized surgical treatment of bone fractures via minimal invasive surgery under local anaesthesia. This will be accomplished by developing a novel library of biocompatible, biodegradable triazine monomers, linear polycarbonates and multi-purpose dendritic materials, capable of binding to wet bone, together with strong biodegradable organic/ceramic composites. Building from the bottom up, the concept involves three domains: a bone substitute void filler, topological mechanical fixation patch, and a protective anti-bacterial hydrogel layer. The components will be delivered through narrow gauge needles and solidify “on fracture site” via High Energy Visible Light Off-Stoichiometric Thiol-Ene Coupling chemistry (HEV-OSTEC). Collectively, these will form a Bone Restoration Patch (BRP) - a customizable, universal solution for fractures that upon complete healing will be fully resorbed. The BRPs will be thoroughly evaluated by stakeholders in order to assess relevant properties, both ex vivo and finally in vivo on relevant animal models. The ultimate goal is to cement a new disruptive technology and a paradigm shift in clinical interventions of bone fractures in which BoneFix heals, fixates and protects complex fractures making screws, plates and open surgery obsolete.

Status

SIGNED

Call topic

FETPROACT-EIC-05-2019

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.2. FET Proactive
H2020-FETPROACT-2019-2020
FETPROACT-EIC-05-2019 FET Proactive: emerging paradigms and communities