Summary
2D-INK is targeted at developing inks of novel 2D semiconducting materials for low-cost large-area fabrication processes on insulating substrates through a new methodology, which will exceed the properties of state-of-the-art graphene- and graphene oxide based inks. Achieving this would represent an important step forward in the processing of 2D semiconducting materials and will provide the key parameters for fabricating the next generation of ultrathin electronic appliances.
The inherent high-risk of 2D-INK is countered by a strongly interdisciplinary research team composed of 9 partners (8 academics + 1 SME) with demonstrated experience in their corresponding fields and with different yet highly complementary backgrounds. Therefore only together and in synergy they will be able to address the challenges of the multiple research and innovation aspects of 2D-INK that cover the entire value chain from materials design and synthesis, characterisation, formulation and processing to device implementation.
In addition 2D-INK has the potential to revolutionise research on 2D semiconducting materials way beyond the current interests on synthesis (high impact), since the efficient dispersion and formulation of 2D semiconducting materials into inks enables the applications of 2D semiconducting materials over different scientific and technological disciplines, such as electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
Overall, 2D-INK addresses perfectly the challenge of this call as it is an archetype of an early stage, high risk visionary science and technology collaborative research project that explores radically new manufacturing and processing technologies for novel 2D semiconducting materials.
The inherent high-risk of 2D-INK is countered by a strongly interdisciplinary research team composed of 9 partners (8 academics + 1 SME) with demonstrated experience in their corresponding fields and with different yet highly complementary backgrounds. Therefore only together and in synergy they will be able to address the challenges of the multiple research and innovation aspects of 2D-INK that cover the entire value chain from materials design and synthesis, characterisation, formulation and processing to device implementation.
In addition 2D-INK has the potential to revolutionise research on 2D semiconducting materials way beyond the current interests on synthesis (high impact), since the efficient dispersion and formulation of 2D semiconducting materials into inks enables the applications of 2D semiconducting materials over different scientific and technological disciplines, such as electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
Overall, 2D-INK addresses perfectly the challenge of this call as it is an archetype of an early stage, high risk visionary science and technology collaborative research project that explores radically new manufacturing and processing technologies for novel 2D semiconducting materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/664878 |
Start date: | 01-01-2016 |
End date: | 31-12-2018 |
Total budget - Public funding: | 2 962 661,00 Euro - 2 962 661,00 Euro |
Cordis data
Original description
2D-INK is targeted at developing inks of novel 2D semiconducting materials for low-cost large-area fabrication processes on insulating substrates through a new methodology, which will exceed the properties of state-of-the-art graphene- and graphene oxide based inks. Achieving this would represent an important step forward in the processing of 2D semiconducting materials and will provide the key parameters for fabricating the next generation of ultrathin electronic appliances.The inherent high-risk of 2D-INK is countered by a strongly interdisciplinary research team composed of 9 partners (8 academics + 1 SME) with demonstrated experience in their corresponding fields and with different yet highly complementary backgrounds. Therefore only together and in synergy they will be able to address the challenges of the multiple research and innovation aspects of 2D-INK that cover the entire value chain from materials design and synthesis, characterisation, formulation and processing to device implementation.
In addition 2D-INK has the potential to revolutionise research on 2D semiconducting materials way beyond the current interests on synthesis (high impact), since the efficient dispersion and formulation of 2D semiconducting materials into inks enables the applications of 2D semiconducting materials over different scientific and technological disciplines, such as electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
Overall, 2D-INK addresses perfectly the challenge of this call as it is an archetype of an early stage, high risk visionary science and technology collaborative research project that explores radically new manufacturing and processing technologies for novel 2D semiconducting materials.
Status
CLOSEDCall topic
FETOPEN-RIA-2014-2015Update Date
27-04-2024
Images
No images available.
Geographical location(s)