Summary
Concentrating Solar Power (CSP) has long been seen as one of the main routes for moving towards carbon neutrality, characterised by both overall system efficiency and Levelised Cost of Energy comparable with photovoltaics. Unfortunately, CSP is currently only implemented through very large centralized plant scales (>100 MW capacity), as process economics make this technology unsustainable at a smaller scale. That’s why, apart from few demo-plants, there is no commercial plant available in the 50 kW – 1 MW range.
In the AMADEUS FET-OPEN project we have developed a thermionic-based converter, that is applied in TECSAS to concentrated solar energy and is able to selectively absorb the radiation to produce electrical power by exploiting efficiently sunlight and excess heat. When applied in substitution of state of the art traditional passive receiver elements, the proposed TECSAS technology allows a maximum increase of the CSP conversion efficiency from 20% up to 45%, potentially more than twice as much state of the art performances, regardless of the plant size.
This can make existing and under construction CSP plants much more efficient, and at the same time allows thinking of scaling down CSP plants to sizes that are currently econonically unsustainable (≤1 MW).
The aim of the TECSAS Launchpad project is to evaluate the technological and business feasibility of downscaled CSP plants (≤ 1 MW) powered by our thermionic converter, as well as to assess the willingness to pay of large scale plant owners which want to integrate TECSAS for performance enhancement. If successful, we will prove that CSP can be applied to benefit several industrial settings, small rural communities and other residential applications.
In the AMADEUS FET-OPEN project we have developed a thermionic-based converter, that is applied in TECSAS to concentrated solar energy and is able to selectively absorb the radiation to produce electrical power by exploiting efficiently sunlight and excess heat. When applied in substitution of state of the art traditional passive receiver elements, the proposed TECSAS technology allows a maximum increase of the CSP conversion efficiency from 20% up to 45%, potentially more than twice as much state of the art performances, regardless of the plant size.
This can make existing and under construction CSP plants much more efficient, and at the same time allows thinking of scaling down CSP plants to sizes that are currently econonically unsustainable (≤1 MW).
The aim of the TECSAS Launchpad project is to evaluate the technological and business feasibility of downscaled CSP plants (≤ 1 MW) powered by our thermionic converter, as well as to assess the willingness to pay of large scale plant owners which want to integrate TECSAS for performance enhancement. If successful, we will prove that CSP can be applied to benefit several industrial settings, small rural communities and other residential applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101034922 |
Start date: | 01-03-2021 |
End date: | 31-08-2022 |
Total budget - Public funding: | - 100 000,00 Euro |
Cordis data
Original description
Concentrating Solar Power (CSP) has long been seen as one of the main routes for moving towards carbon neutrality, characterised by both overall system efficiency and Levelised Cost of Energy comparable with photovoltaics. Unfortunately, CSP is currently only implemented through very large centralized plant scales (>100 MW capacity), as process economics make this technology unsustainable at a smaller scale. That’s why, apart from few demo-plants, there is no commercial plant available in the 50 kW – 1 MW range.In the AMADEUS FET-OPEN project we have developed a thermionic-based converter, that is applied in TECSAS to concentrated solar energy and is able to selectively absorb the radiation to produce electrical power by exploiting efficiently sunlight and excess heat. When applied in substitution of state of the art traditional passive receiver elements, the proposed TECSAS technology allows a maximum increase of the CSP conversion efficiency from 20% up to 45%, potentially more than twice as much state of the art performances, regardless of the plant size.
This can make existing and under construction CSP plants much more efficient, and at the same time allows thinking of scaling down CSP plants to sizes that are currently econonically unsustainable (≤1 MW).
The aim of the TECSAS Launchpad project is to evaluate the technological and business feasibility of downscaled CSP plants (≤ 1 MW) powered by our thermionic converter, as well as to assess the willingness to pay of large scale plant owners which want to integrate TECSAS for performance enhancement. If successful, we will prove that CSP can be applied to benefit several industrial settings, small rural communities and other residential applications.
Status
CLOSEDCall topic
FETOPEN-03-2018-2019-2020Update Date
27-04-2024
Images
No images available.
Geographical location(s)