MOLShuttle | Versatile Platform for Handling Nanographenes

Summary
"Current strategies to fabricate novel materials are commonly constituted on composite designs, ideally engineered with atomic precision. Tremendous prospects exist for nano-electronics integrating functional molecules and nano-architectures, such as the nano-graphene family. By depositing tailored molecules on well-defined interfaces in vacuum, novel sophisticated structures and device elements come in reach. However, typical deposition processes with atomic finesse are limited to thermostable sublimable molecules, excluding many organics and almost all biomolecules with their fascinating properties. Our SoftBeam system fills this gap. Inspired by the 2D-INK FET project, we shall realize a versatile tool based on cutting-edge technology to deposit solvable species, irrespective of fragility aspects, on a given template in a highly-controlled manner. To reach full flexibility and a broad R&D community we propose a) to develop an innovative ""portable preparation port""- a station to transfer the deposition yield to a desired analytical system such as scanning probe or electron microscopy, x-ray spectroscopy or synchrotron, and b) to integrate the system by refinement of the spray step and vacuum setup, while keeping vacuum, temperature control, and performance at lower expenses. SoftBeam will allow efficient and flexible handling of a plethora of complex species, which could not be processed with the methods applied in the 2D-INK project. Combining an innovative deposition method and the 2D-INK's holistic approach, we shall establish a next-generation instrumental platform for realizing unprecedented nano-architectures. Value to FET-project’s potential is obvious: While the initial aim on the development of novel materials remains, a new dimension is reached by the introduction of a potentially disruptive fabrication method. These measures will foster EU region and benefit a wide spectrum of end-users in nanotechnology, biotech, material science, chemistry and physics."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/946223
Start date: 01-07-2020
End date: 31-12-2021
Total budget - Public funding: 100 000,00 Euro - 100 000,00 Euro
Cordis data

Original description

"Current strategies to fabricate novel materials are commonly constituted on composite designs, ideally engineered with atomic precision. Tremendous prospects exist for nano-electronics integrating functional molecules and nano-architectures, such as the nano-graphene family. By depositing tailored molecules on well-defined interfaces in vacuum, novel sophisticated structures and device elements come in reach. However, typical deposition processes with atomic finesse are limited to thermostable sublimable molecules, excluding many organics and almost all biomolecules with their fascinating properties. Our SoftBeam system fills this gap. Inspired by the 2D-INK FET project, we shall realize a versatile tool based on cutting-edge technology to deposit solvable species, irrespective of fragility aspects, on a given template in a highly-controlled manner. To reach full flexibility and a broad R&D community we propose a) to develop an innovative ""portable preparation port""- a station to transfer the deposition yield to a desired analytical system such as scanning probe or electron microscopy, x-ray spectroscopy or synchrotron, and b) to integrate the system by refinement of the spray step and vacuum setup, while keeping vacuum, temperature control, and performance at lower expenses. SoftBeam will allow efficient and flexible handling of a plethora of complex species, which could not be processed with the methods applied in the 2D-INK project. Combining an innovative deposition method and the 2D-INK's holistic approach, we shall establish a next-generation instrumental platform for realizing unprecedented nano-architectures. Value to FET-project’s potential is obvious: While the initial aim on the development of novel materials remains, a new dimension is reached by the introduction of a potentially disruptive fabrication method. These measures will foster EU region and benefit a wide spectrum of end-users in nanotechnology, biotech, material science, chemistry and physics."

Status

CLOSED

Call topic

FETOPEN-03-2018-2019-2020

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.1. FET Open
H2020-FETOPEN-2018-2020
FETOPEN-03-2018-2019-2020 FET Innovation Launchpad